IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v60y2012i2p501-515.html
   My bibliography  Save this article

Assessment of uncertainties related to seismic hazard using fuzzy analysis

Author

Listed:
  • N. Jorjiashvili
  • T. Yokoi
  • Z. Javakhishvili

Abstract

Seismic hazard analysis in the last few decades has become a very important issue. Recently, new technologies and available data have been improved that have helped many scientists to understand where and why earthquakes happen, the physics of earthquakes, etc. Scientists have begun to understand the role of uncertainty in seismic hazard analysis. However, how to handle existing uncertainty is still a significant problem. The same lack of information causes difficulties in quantifying uncertainty accurately. Usually, attenuation curves are obtained in a statistical manner: regression analysis. Statistical and probabilistic analyses show overlapping results for the site coefficients. This overlapping takes place not only at the border between two neighboring classes but also among more than three classes. Although the analysis starts from classifying sites using geological terms, these site coefficients are not classified at all. In the present study, this problem is solved using fuzzy set theory. Using membership functions, the ambiguities at the border between neighboring classes can be avoided. Fuzzy set theory is performed for southern California in the conventional way. In this study, standard deviations that show variations between each site class obtained by fuzzy set theory and the classical manner are compared. Results of this analysis show that when we have insufficient data for hazard assessment, site classification based on fuzzy set theory shows values of standard deviations less than those obtained using the classical way, which is direct proof of less uncertainty. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • N. Jorjiashvili & T. Yokoi & Z. Javakhishvili, 2012. "Assessment of uncertainties related to seismic hazard using fuzzy analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 501-515, January.
  • Handle: RePEc:spr:nathaz:v:60:y:2012:i:2:p:501-515
    DOI: 10.1007/s11069-011-0026-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0026-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0026-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelena M. Andrić & Da-Gang Lu, 2017. "Fuzzy probabilistic seismic hazard analysis with applications to Kunming city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1031-1057, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:60:y:2012:i:2:p:501-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.