IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v59y2011i2p801-810.html
   My bibliography  Save this article

Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude

Author

Listed:
  • Ranjit Das
  • H. Wason
  • M. Sharma

Abstract

A homogenous earthquake catalog is a basic input for seismic hazard estimation, and other seismicity studies. The preparation of a homogenous earthquake catalog for a seismic region needs regressed relations for conversion of different magnitudes types, e.g. m b , M s , to the unified moment magnitude M w. In case of small data sets for any seismic region, it is not possible to have reliable region specific conversion relations and alternatively appropriate global regression relations for the required magnitude ranges and focal depths can be utilized. In this study, we collected global events magnitude data from ISC, NEIC and GCMT databases for the period 1976 to May, 2007. Data for m b magnitudes for 3,48,423 events for ISC and 2,38,525 events for NEIC, M s magnitudes for 81,974 events from ISC and 16,019 events for NEIC along with 27,229 M w events data from GCMT has been considered. An epicentral plot for M w events considered in this study is also shown. M s determinations by ISC and NEIC, have been verified to be equivalent. Orthogonal Standard Regression (OSR) relations have been obtained between M s and M w for focal depths (h > 70 km) in the magnitude ranges 3.0 ≤ M s ≤ 6.1 and 6.2 ≤ M s ≤ 8.4, and for focal depths 70 km ≤ h ≤ 643 km in the magnitude range 3.3 ≤ M s ≤ 7.2. Standard and Inverted Standard Regression plots are also shown along with OSR to ascertain the validation of orthogonal regression for M s magnitudes. The OSR relations have smaller uncertainty compared to SR and ISR relations for M s conversions. ISR relations between m b and M w have been obtained for magnitude ranges 2.9 ≤ m b ≤ 6.5, for ISC events and 3.8 ≤ m b ≤ 6.5 for NEIC events. The regression relations derived in this study based on global data are useful empirical relations to develop homogenous earthquake catalogs in the absence of regional regression relations, as the events catalog for most seismic regions are heterogeneous in magnitude types. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Ranjit Das & H. Wason & M. Sharma, 2011. "Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 801-810, November.
  • Handle: RePEc:spr:nathaz:v:59:y:2011:i:2:p:801-810
    DOI: 10.1007/s11069-011-9796-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9796-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9796-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahul Sinha & Rajib Sarkar, 2020. "Seismic Hazard Assessment of Dhanbad City, India, by deterministic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1857-1880, September.
    2. Ranjit Das & Claudio Menesis & Diego Urrutia, 2023. "Regression relationships for conversion of body wave and surface wave magnitudes toward Das magnitude scale, Mwg," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 365-380, May.
    3. Sankar Kumar Nath & Suman Mandal & Manik Adhikari & Soumya Kanti Maiti, 2017. "A unified earthquake catalogue for South Asia covering the period 1900–2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1787-1810, February.
    4. Masoud Mojarab & Nazi Norouzi & Mahdokht Bayati & Zeinab Asadi & Mohamad Eslami & Mohsen Ghafory-Ashtiany & Abdul-Latif Helaly & Sara Khoshnevis, 2023. "Assessment of seismic hazard including equivalent-linear soil response analysis for Dhaka Metropolitan Region, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3145-3180, July.
    5. Amit Shiuly & J. Narayan, 2012. "Deterministic seismic microzonation of Kolkata city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 223-240, January.
    6. V. A. Pavlenko & A. Kijko, 2019. "Comparative study of three probabilistic methods for seismic hazard analysis: case studies of Sochi and Kamchatka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 775-791, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:59:y:2011:i:2:p:801-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.