IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v59y2011i1p347-365.html
   My bibliography  Save this article

Characteristics of landslides induced by a debris flow at different geology with emphasis on clay mineralogy in South Korea

Author

Listed:
  • Gyo-Cheol Jeong
  • Kyeong-Su Kim
  • Chang-Oh Choo
  • Jong-Tae Kim
  • Man-Il Kim

Abstract

Landslides induced by debris flow have been discussed in relation to the geotechnical properties of soil developed on bedrock, together with an emphasis on the importance of mineralogy comprising precursor soils. Three areas composed of different types of geology were compared to relate landslide with soil compositions: Precambrian gneiss (Jangheung area), Jurassic granite (Sangju area), and Tertiary sedimentary rocks composed of shale and mudstone (Pohang area) in Korea. X-ray diffraction for mineral identification and quantitative analysis, Scanning Electron Microscope for observation of microtexture, and laser size analysis for very fine particles ranging from micrometer were performed, with conventional measurements of particle size, porosity, density, permeability, and consistency for the soils. Soils at landslide sites containing a large amount of finer particles have higher uniformity and gradation coefficients, but lower consistency than those at non-landslide sites. Landslide areas are characterized by higher porosity and lower density. Soil from the gneiss area shows a high plasticity index while that of mudstone has high water content. Main clay minerals contained in soils of the sites where landslides took place are illite, chlorite, kaolinite, and montmorillonite. Mineralogical information on the constituents and microtexture of soils aids in better understanding the causes and patterns of landslide, together with mechanical properties of soils. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Gyo-Cheol Jeong & Kyeong-Su Kim & Chang-Oh Choo & Jong-Tae Kim & Man-Il Kim, 2011. "Characteristics of landslides induced by a debris flow at different geology with emphasis on clay mineralogy in South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 347-365, October.
  • Handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:347-365
    DOI: 10.1007/s11069-011-9760-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9760-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9760-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ram Ray & Jennifer Jacobs, 2007. "Relationships among remotely sensed soil moisture, precipitation and landslide events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 211-222, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao-Ming Hong & Shiuan Wan, 2011. "Forecasting groundwater level fluctuations for rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 167-184, May.
    2. Natthachet Tangdamrongsub & Chalita Forgotson & Chandana Gangodagamage & Joshua Forgotson, 2021. "The analysis of using satellite soil moisture observations for flood detection, evaluating over the Thailand’s Great Flood of 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2879-2904, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:347-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.