IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v43y2007i2p211-222.html
   My bibliography  Save this article

Relationships among remotely sensed soil moisture, precipitation and landslide events

Author

Listed:
  • Ram Ray
  • Jennifer Jacobs

Abstract

Landslides are triggered by earthquakes, volcanoes, floods, and heavy continuous rainfall. For most types of slope failure, soil moisture plays a critical role because increased pore water pressure reduces the soil strength and increases stress. However, in-situ soil moisture profiles are rarely measured. To establish the soil moisture and landslide relationship, a qualitative comparison among soil moisture derived from AMSR-E, precipitation from TRMM and major landslide events was conducted. This study shows that it is possible to estimate antecedent soil moisture conditions using AMSR-E and TRMM satellite data in landslide prone areas. AMSR-E data show distinct annual patterns of soil moisture that reflect observed rainfall patterns from TRMM. Results also show enhanced AMSR-E soil moisture and TRMM rainfall prior to major landslide events in landslide prone regions of California, U.S.; Leyte, Philippines; and Dhading, Nepal. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Ram Ray & Jennifer Jacobs, 2007. "Relationships among remotely sensed soil moisture, precipitation and landslide events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 211-222, November.
  • Handle: RePEc:spr:nathaz:v:43:y:2007:i:2:p:211-222
    DOI: 10.1007/s11069-006-9095-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-006-9095-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-006-9095-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyo-Cheol Jeong & Kyeong-Su Kim & Chang-Oh Choo & Jong-Tae Kim & Man-Il Kim, 2011. "Characteristics of landslides induced by a debris flow at different geology with emphasis on clay mineralogy in South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 347-365, October.
    2. Natthachet Tangdamrongsub & Chalita Forgotson & Chandana Gangodagamage & Joshua Forgotson, 2021. "The analysis of using satellite soil moisture observations for flood detection, evaluating over the Thailand’s Great Flood of 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2879-2904, September.
    3. Yao-Ming Hong & Shiuan Wan, 2011. "Forecasting groundwater level fluctuations for rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 167-184, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:43:y:2007:i:2:p:211-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.