IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v59y2011i1p329-345.html
   My bibliography  Save this article

Site response studies in Agartala Urban agglomeration

Author

Listed:
  • S. Chowdhuri
  • O. Singh
  • R. Majumdar

Abstract

A systematic investigation using digital microearthquake recorders with short period SS-1 seismometers, covering 76 sites in and around Agartala city, has been carried out for site response (SR) studies in the area. In the northern part of the area, SR varies from 1.15 to 1.85 corresponding to peak frequency 0.76 to 0.93 Hz where soil is mostly semi-consolidated and stiffer than recent Quaternary deposits (Haora River formation). In the southern part of the area, SR varies from 1.12 to 2.42 corresponding to peak frequency from 0.71 to 0.85 Hz within the Dupitila formation (early Quaternary). It is observed that estimated SR from H/V increases from edges to middle of the Haora River valley and impedance contrast fallows the similar trend. This reflects that site response by H/V is influenced by impedance contrast, whereas computed amplification from 1-D model shows opposite trend. The maximum amplification at fundamental frequency of resonance, 1.04 Hz estimated from H/V by near to BH-7, is 2.5 times greater than the impedance contrast/ratio derived from 1-D model for same location. Relationship between resonance frequency and depth was obtained by applying quarter wavelength and Bard ( 2000 ) methodologies, which shows linearity, whereas H/V shows its nonlinearity characteristic in soil across the valley part of Haora River. Shear wave velocities, and subsequently, SPT index and factor of safety (by cyclic stress approach) were estimated from geotechnical parameters. Vs30 and site response data were used in this study for getting a first hand information about soil stiffness condition in the area. The estimation of SPT index and factor of safety could be a useful tool for delineating liquefied and none liquefied zones at various depth levels, especially where water table exists at a very shallow level. The expected liquefiable zone was observed at depths varying from 6–25 m beneath the soil bearing zones where percentage of fines is estimated to be more than 35% for the area. This knowledge about subsurface soil characteristics will be useful for the civil engineers/city planners, which can be taken into account at the time of constructing earthquake-resistant structures in the area. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • S. Chowdhuri & O. Singh & R. Majumdar, 2011. "Site response studies in Agartala Urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 329-345, October.
  • Handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:329-345
    DOI: 10.1007/s11069-011-9759-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9759-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9759-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Mandal & P. Khan & A. Shukla, 2014. "Soil responses near Delhi ridge and adjacent regions in Greater Delhi during incidence of a local earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 93-118, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:329-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.