IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v41y2007i1p43-60.html
   My bibliography  Save this article

Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan

Author

Listed:
  • H. Wang
  • K. Sassa
  • W. Xu

Abstract

On October 23, 2004, a series of powerful earthquakes with a maximum M w = 6.6 located near the western coast of northern Honshu struck parts of northern Japan, particularly Niigata Prefecture; these earthquakes were known as the Chuetsu event. Thousands of landslides, as a secondary geotechnical hazard associated with these earthquakes, were triggered over a broad area; these landslides were of almost all types. The purpose of this study was to detect correlations between landslide occurrence with geologic and geomorphologic conditions, slope geometry, and earthquake parameters using two indexes based on Geographic Information Systems (GIS). In the study area, the landslide–area ratio (LAR), which is defined as the percentage of the area affected by landslides, was 2.9%, and the landslide concentration (LC), the number of landslides per square kilometer, was 4.4 landslides/km 2 , which is much more than other reported cases of seismic activity with the same magnitude. This was possibly due to heavy rainfall just before the Chuetsu earthquakes. Statistical analyses show that LAR has a positive correlation with slope steepness and distance from the epicenter, while LC is inversely correlated with distance from the epicenter. The Wanazu Formation had the most concentrated landslide activity, followed by the Kawaguchi, Ushigakubi, Shiroiwa and Oyama Formations, although the Wanazu Formation occupied only 4.5% of the total area of geological units. With 8.2% of the area affected by seismic landslides, the Kawaguchi Formation had the highest LAR. It was followed by the Shiroiwa, Ushigakubi and Wanazu Formations with LAR ranging from 4.6% to 6.0%. For lots of geological subunits, landslides are more frequent in a range of slope angles between 15° and 40°. The susceptibility to landsliding of each geologic unit was thus evaluated to correlate with slope steepness. It was also noted that the effects of the earthquakes were made far worse by antecedent rainfall conditions induced by a␣typhoon, and further research emphasizing the role of antecedent rainfall was discussed. Copyright Springer Science+Business Media B.V. 2007

Suggested Citation

  • H. Wang & K. Sassa & W. Xu, 2007. "Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 43-60, April.
  • Handle: RePEc:spr:nathaz:v:41:y:2007:i:1:p:43-60
    DOI: 10.1007/s11069-006-9009-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-006-9009-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-006-9009-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Wang & Zhihua Wang & Hongbin Cheng & Junmei Kang & Xiaoliang Liu, 2022. "Land Cover Changing Pattern in Pre- and Post-Earthquake Affected Area from Remote Sensing Data: A Case of Lushan County, Sichuan Province," Land, MDPI, vol. 11(8), pages 1-24, July.
    2. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    3. Wen-Tzu Lin & Wen-Chieh Chou & Chao-Yuan Lin, 2008. "Earthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: a case study in central Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 331-347, December.
    4. Chong Xu & Xiwei Xu, 2014. "Statistical analysis of landslides caused by the Mw 6.9 Yushu, China, earthquake of April 14, 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 871-893, June.
    5. Muhammad Basharat & Abid Ali & Ishtiaq A. K. Jadoon & Joachim Rohn, 2016. "Using PCA in evaluating event-controlling attributes of landsliding in the 2005 Kashmir earthquake region, NW Himalayas, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1999-2017, April.
    6. Hailin He & Xiujun Dong & Simin Du & Hua Guo & Yue Yan & Guohui Chen, 2024. "Study on the Stability of Cut Slopes Caused by Rural Housing Construction in Red Bed Areas: A Case Study of Wanyuan City, China," Sustainability, MDPI, vol. 16(3), pages 1-17, February.
    7. Junmei Kang & Zhihua Wang & Hongbin Cheng & Jun Wang & Xiaoliang Liu, 2022. "Remote Sensing Land Use Evolution in Earthquake-Stricken Regions of Wenchuan County, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:41:y:2007:i:1:p:43-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.