IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06654-6.html
   My bibliography  Save this article

The role of volcanic ash thickness on the hydraulic conductivity of the ground and the initiation of debris flows

Author

Listed:
  • Timur Ersöz

    (Niigata University)

  • Kyoka Haneda

    (Niigata University)

  • Yutaka Gonda

    (Niigata University)

Abstract

Lahars are hazardous mixtures of rock and water that flow rapidly in the form of debris flows or mudflows. The continuous eruptions at Sakurajima supply volcanic ash to form on the surface, reducing the permeability of the ground. As the surface permeability decreases, surface runoff occurs and eventually lahar starts. Therefore, Sakurajima Island suffers from lahars triggered by heavy rains every year. Sheet erosion by surface runoff decreases the thickness of volcanic ash on the ground and subsequently increases hydraulic conductivity. This cycle continues due to the eruptions of the Sakurajima volcano and the lahars formed by heavy rains. Depending on the lahar type and amount of surface runoff, the flow density and block sizes carried in the lahar vary. In this study, the relationship between the volcanic ash thickness and the hydraulic conductivity of the ground was investigated in the Arimura River basin of Sakurajima volcano between 2015 and 2020. Monthly volcanic ash thickness was measured 2 km from the craters. The dynamic change of volcanic ash thickness due to accumulation and erosion was investigated by the Universal Soil Loss Equation and the newly developed Discharge Dependent Erosion methods. Block sizes of the lahars were estimated by vibrographs and CCTV camera. The hydraulic conductivity of the ground was calculated with a Kinematic Wave Model developed specifically for this study. Based on the relationship between volcanic ash thickness and hydraulic conductivity, a risk assessment chart was created considering the block sizes carried by the lahars.

Suggested Citation

  • Timur Ersöz & Kyoka Haneda & Yutaka Gonda, 2024. "The role of volcanic ash thickness on the hydraulic conductivity of the ground and the initiation of debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10969-11007, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06654-6
    DOI: 10.1007/s11069-024-06654-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06654-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06654-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Ponziani & Paolo Pogliotti & Hervé Stevenin & Sara Maria Ratto, 2020. "Debris-flow Indicator for an early warning system in the Aosta valley region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1819-1839, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Ponziani & D. Ponziani & A. Giorgi & H. Stevenin & S. M. Ratto, 2023. "The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 143-162, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06654-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.