IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06632-y.html
   My bibliography  Save this article

Evaluation of urban flood adaptability based on the InVEST model and GIS: A case study of New York City, USA

Author

Listed:
  • Song Yao

    (Zhejiang University
    Zhejiang University)

  • Guoping Huang

    (University of Southern California)

  • Zihan Chen

    (George School)

Abstract

Flood risk has become a serious challenge for many cities, including New York City (NYC). Evaluating urban flood adaptability evaluation is crucial for regulating storm and rain risks. In this study, we proposed an integrated framework based on the Integrated Valuation of Ecosystem Services (InVEST) model and Geographic Information System (GIS). First, the InVEST model was used to assess the water yield, soil conservation, and water quality purification in NYC. Second, the entropy weighting method was employed to determine the weights of indicators for computing the flood adaptability evaluation (FAE). Third, a spatial correlation of FAE was conducted and finally delineated the flood adaptability zones in GIS. The results show that: (1) The spatial distribution of FAE was uneven, high in the surrounding area and low in the center. (2) The Moran's I for FAE was 0.644, showing an overall positive spatial relationship of FAE. High-scoring clusters were located in the southeastern area while low-scoring clusters were in the northern, central, and southwestern areas. (3) The FAE in NYC can be divided into five categories: the lower-adapted zone (0.22–0.27), low-adapted zone (0.28–0.31), medium-adapted zone (0.32–0.36), high-adapted zone (0.37–0.43) and higher-adapted zone (0.44–0.50). These results of the study can provide evidence and recommendations for flood risk management in NYC and other cities worldwide.

Suggested Citation

  • Song Yao & Guoping Huang & Zihan Chen, 2024. "Evaluation of urban flood adaptability based on the InVEST model and GIS: A case study of New York City, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11063-11082, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06632-y
    DOI: 10.1007/s11069-024-06632-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06632-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06632-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julien Boulange & Naota Hanasaki & Dai Yamazaki & Yadu Pokhrel, 2021. "Role of dams in reducing global flood exposure under climate change," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    3. B. Tellman & J. A. Sullivan & C. Kuhn & A. J. Kettner & C. S. Doyle & G. R. Brakenridge & T. A. Erickson & D. A. Slayback, 2021. "Satellite imaging reveals increased proportion of population exposed to floods," Nature, Nature, vol. 596(7870), pages 80-86, August.
    4. Arthur Getis & J. Keith Ord, 2010. "The Analysis of Spatial Association by Use of Distance Statistics," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 127-145, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxu Chen & Jianrong Cao & Zhonglin Ji & Yanjun Liu, 2025. "Land Use and Land Cover Change and Its Impact on Carbon Stock in the Yellow River Delta Wetland Ecosystem of China," Sustainability, MDPI, vol. 17(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Qi & Fan, Yawen, 2024. "Hedging downside risk in agricultural commodities: A novel nonparametric kernel method," Finance Research Letters, Elsevier, vol. 70(C).
    2. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    3. Ning Zhang & Ying Mao, 2021. "Spatial Effects of Environmental Pollution on Healthcare Services: Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    4. Jun Rentschler & Paolo Avner & Mattia Marconcini & Rui Su & Emanuele Strano & Stephane Hallegatte & Louise Bernard & Capucine Riom & Paolo Avner, 2022. "Rapid Urban Growth in Flood Zones," World Bank Publications - Reports 37348, The World Bank Group.
    5. Dinesh Roulo & Subbarao Pichuka, 2024. "Assessing the effects of extreme rainfall patterns and their impact on dam safety: a case study on Indian dam failures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12967-12987, November.
    6. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    7. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    8. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    9. Sean Fox & Felix Agyemang & Laurence Hawker & Jeffrey Neal, 2024. "Integrating social vulnerability into high-resolution global flood risk mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Mehmet Ronael & Tüzin Baycan, 2022. "Place-based factors affecting COVID-19 incidences in Turkey," Asia-Pacific Journal of Regional Science, Springer, vol. 6(3), pages 1053-1086, October.
    11. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    12. Cláudia M. Viana & Dulce Freire & Patrícia Abrantes & Jorge Rocha, 2021. "Evolution of Agricultural Production in Portugal during 1850–2018: A Geographical and Historical Perspective," Land, MDPI, vol. 10(8), pages 1-18, July.
    13. You, Heyuan & Zhang, Xiaoling, 2017. "Sustainable livelihoods and rural sustainability in China: Ecologically secure, economically efficient or socially equitable?," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 1-13.
    14. Felipe Santos‐Marquez & Carlos Mendez, 2021. "Regional convergence, spatial scale, and spatial dependence: Evidence from homicides and personal injuries in Colombia 2010–2018," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(4), pages 1162-1184, August.
    15. Jianwei Qi & Yayan Lu & Fang Han & Xuankai Ma & Zhaoping Yang, 2022. "Spatial Distribution Characteristics of the Rural Tourism Villages in the Qinghai-Tibetan Plateau and Its Influencing Factors," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    16. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    17. Cuixia Yan & Lucang Wang & Qing Zhang, 2021. "Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    18. Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.
    19. María-Jesús Perles & Juan F. Sortino & Matías F. Mérida, 2021. "The Neighborhood Contagion Focus as a Spatial Unit for Diagnosis and Epidemiological Action against COVID-19 Contagion in Urban Spaces: A Methodological Proposal for Its Detection and Delimitation," IJERPH, MDPI, vol. 18(6), pages 1-24, March.
    20. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06632-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.