IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i11d10.1007_s11069-024-06604-2.html
   My bibliography  Save this article

Drought severity across Africa: a comparative analysis of multi-source precipitation datasets

Author

Listed:
  • Kenny Thiam Choy Lim Kam Sian

    (Wuxi University)

  • Charles Onyutha

    (Kyambogo University)

  • Brian Odhiambo Ayugi

    (Seoul National University of Science and Technology)

  • Ibrahim Njouenwet

    (University of Yaounde 1)

  • Victor Ongoma

    (Mohammed VI Polytechnic University)

Abstract

An accurate analysis of climate extremes is essential for impact assessment and devising appropriate adaptation measures. There is an urgent need to assess precipitation products in capturing the increasing occurrence of climate extremes. This study evaluates the ability of 20 observational datasets, including gauge-based, satellite-based and reanalyses, in representing different drought severity (moderate, severe and extreme drought) over Africa and its nine sub-regions at varying time scales (3-, 6- and 12-months) during 1983–2014. Drought is represented using the Standardized Precipitation Index (SPI). The results demonstrate that while most datasets are suitable for drought studies over the continent, the African Rainfall Climatology version 2 (ARC2) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Records (PERSIANN_CDR_v1r1) are less fitted for such investigations. Moreover, regions such as the Sahara (SAH), Central Africa (CAF) and North Eastern Africa (NEAF) show a larger disparity among the datasets, requiring more caution when selecting a dataset for use in such areas. Generally, the datasets present low agreement toward the lower end of the range (5–30%) because the individual datasets estimate varying drought severities at different grids and months. This is observed in the coefficient of variation of 20–25% of the datasets falling outside the ± 1 standard deviation range. Therefore, using an ensemble to represent the datasets remains an indispensable tool. The datasets present better agreement in the timing of drought events than the spatial distribution. The findings provide valuable insights into the complexity of drought assessment using diverse precipitation datasets. Furthermore, the results highlight the significance of considering spatial and temporal dimensions, as datasets may capture drought events at varying locations and times, revealing subtle variations in drought impact.

Suggested Citation

  • Kenny Thiam Choy Lim Kam Sian & Charles Onyutha & Brian Odhiambo Ayugi & Ibrahim Njouenwet & Victor Ongoma, 2024. "Drought severity across Africa: a comparative analysis of multi-source precipitation datasets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10241-10271, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06604-2
    DOI: 10.1007/s11069-024-06604-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06604-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06604-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06604-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.