IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i11d10.1007_s11069-024-06597-y.html
   My bibliography  Save this article

Simulating block-scale flood inundation and streamflow using the WRF-Hydro model in the New York City metropolitan area

Author

Listed:
  • Berina Mina Kilicarslan

    (Stevens Institute of Technology)

  • Marouane Temimi

    (Stevens Institute of Technology)

Abstract

This study assesses the performance of the Weather Research and Forecasting-Hydrological modeling system (WRF-Hydro) in the simulation of street-scale flood inundation. The case study is the Hackensack River Watershed in New Jersey, US, which is part of the operational Stevens Flood Advisory System (SFAS), a one-way coupled hydrodynamic-hydrologic system that currently uses the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) to simulate streamflow. The performance of the 50-m gridded WRF-Hydro model was assessed for potential integration into the operational SFAS system. The model was calibrated with the dynamically dimensioned search algorithm using streamflow observations. The model performance was assessed using (i) streamflow observations, (ii) USGS HWMs, and (iii) crowdsourced data on street inundation. Results show that WRF-Hydro outperformed the HEC-HMS model. WRF-Hydro over and underestimated flood inundation extent due to the inaccuracy of the synthetic rating curves and the modeling structure errors. An agreement was noticed between WRF-Hydro and crowdsourced data on flood extent.

Suggested Citation

  • Berina Mina Kilicarslan & Marouane Temimi, 2024. "Simulating block-scale flood inundation and streamflow using the WRF-Hydro model in the New York City metropolitan area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10043-10066, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06597-y
    DOI: 10.1007/s11069-024-06597-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06597-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06597-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Achraf Tounsi & Marouane Temimi, 2023. "A systematic review of natural language processing applications for hydrometeorological hazards assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2819-2870, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun Ho Ro & Jie Gong, 2024. "Scalable approach to create annotated disaster image database supporting AI-driven damage assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11693-11712, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06597-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.