IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i11d10.1007_s11069-024-06593-2.html
   My bibliography  Save this article

Increasing earthquake resilience for the power grid in southwestern British Columbia: integrated disaster planning for the shift from fuel to electric vehicles

Author

Listed:
  • Mike Churchill

    (University of Victoria
    University of Victoria)

  • David Bristow

    (University of Victoria
    University of Victoria)

  • Curran Crawford

    (University of Victoria
    University of Victoria)

Abstract

As electric vehicle (EV) adoption increases, transportation services will shift dependence from liquid fuel infrastructure to electric power infrastructure. Since transportation plays a major role in disaster response and recovery, this shift in dependence has important implications for coupling electrical grids and transport resilience. The implications for the electrical grid for southwestern British Columbia, Canada are examined, motivated by this region’s high EV adoption rate and the potential for a catastrophic magnitude 9.5 earthquake. A comparison of the resilience of the electrical infrastructure compared to the fuel infrastructure is provided and approaches for increasing resilience in the region for EV power supply are discussed. This paper compiles lessons learned from past large earthquakes in Chile, Japan, and New Zealand with consideration given to successes and failures. While this paper was written with a focus on southwestern British Columbia, many of the suggestions for increasing power system resilience could be applied in other seismically active locations during the transition to EVs. This paper also considers integrated disaster resilience planning for the changing transport landscape from fuel vehicles to EVs.

Suggested Citation

  • Mike Churchill & David Bristow & Curran Crawford, 2024. "Increasing earthquake resilience for the power grid in southwestern British Columbia: integrated disaster planning for the shift from fuel to electric vehicles," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9957-9976, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06593-2
    DOI: 10.1007/s11069-024-06593-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06593-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06593-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Clague, 2002. "The Earthquake Threat in Southwestern British Columbia: A Geologic Perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(1), pages 7-33, May.
    2. David Cyranoski, 2011. "Japan faces up to failure of its earthquake preparations," Nature, Nature, vol. 471(7340), pages 556-557, March.
    3. Elisabeth Krausmann & Ana Cruz, 2013. "Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 811-828, June.
    4. Akihiro Otsuka, 2019. "Natural disasters and electricity consumption behavior: a case study of the 2011 Great East Japan Earthquake," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 887-910, October.
    5. David N. Bristow & Christopher A. Kennedy, 2013. "Urban Metabolism and the Energy Stored in Cities," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 656-667, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    2. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    3. Jonathan Jackson & Meg Holden, 2013. "Sustainable Development Compromise[d] in the Planning of Metro Vancouver’s Agricultural Lands—the Jackson Farm Case," Sustainability, MDPI, vol. 5(11), pages 1-27, November.
    4. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Liu, Ningyin & Zhang, Yan & Fath, Brian D., 2021. "The material metabolism characteristics and growth patterns of the central cities of China's Beijing-Tianjin-Hebei region," Ecological Modelling, Elsevier, vol. 448(C).
    7. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    8. Meri Davlasheridze & Qin Fan, 2019. "Valuing Seawall Protection in the Wake of Hurricane Ike," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 257-279, October.
    9. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Mark Seemann & Tuna Onur & Denise Cloutier-Fisher, 2011. "Earthquake shaking probabilities for communities on Vancouver Island, British Columbia, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1253-1273, September.
    11. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    12. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    13. Blake Byron Walker & Nadine Schuurman & David Swanlund & John J. Clague, 2021. "GIS-based multicriteria evaluation for earthquake response: a case study of expert opinion in Vancouver, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2075-2091, January.
    14. D. Parker & S. Priest, 2012. "The Fallibility of Flood Warning Chains: Can Europe’s Flood Warnings Be Effective?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2927-2950, August.
    15. Liang Wang & Xiaolong Xue & Yuanxin Zhang & Xiaowei Luo, 2018. "Exploring the Emerging Evolution Trends of Urban Resilience Research by Scientometric Analysis," IJERPH, MDPI, vol. 15(10), pages 1-29, October.
    16. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2020. "Assessment of safety barrier performance in Natech scenarios," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Mieko Kumasaki & Malcolm King & Mitsuru Arai & Lili Yang, 2016. "Anatomy of cascading natural disasters in Japan: main modes and linkages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1425-1441, February.
    18. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    19. Scira Menoni & Daniela Molinari & Dennis Parker & Francesco Ballio & Sue Tapsell, 2012. "Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2057-2082, December.
    20. Masahiro Matsuura, 2022. "Disasters as Enablers of Negotiation for Sustainability Transition: A Case from Odaka, Fukushima," Sustainability, MDPI, vol. 14(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06593-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.