IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06031-9.html
   My bibliography  Save this article

Probabilistic and deterministic-based approach for liquefaction potential assessment of layered soil

Author

Listed:
  • Prince Poddar

    (KNIT
    IET Dr Rammanohar Lohia Avadh University)

  • Sauhardra Ojha

    (IET Dr Rammanohar Lohia Avadh University)

  • Mohit Kumar Gupta

    (KNIT)

Abstract

In the present study, deterministic and probabilistic approaches have been used for the assessment of liquefaction potential of ground during an earthquake. The deterministic approach was used to analyze and assess the liquefaction of loose saturated river bed deposit with emphasis on two benchmark locations. A wide range of earthquake data in the form of peak ground acceleration (PGA) values of 0.18 g, 0.37 g, 0.6 g and 0.75 g was used as input motions. The dynamic properties of soil were evaluated using standard penetration test (SPT) data obtained from the bore logs. The shear stress induced within soil deposit due to the seismic excitation was calculated in the form of cyclic stress ratio (CSR) and cyclic resistance ratio (CRR) in order to calculate the factor of safety (FOS) against liquefaction. In addition, liquefaction potential index (LPI) and probability of liquefaction (PL) were also calculated using input motion. It was observed, based on the probability analysis and liquefaction indices, that the shallow layer soil profile is safe against liquefaction, whereas deep layer soil profile is unsafe.

Suggested Citation

  • Prince Poddar & Sauhardra Ojha & Mohit Kumar Gupta, 2023. "Probabilistic and deterministic-based approach for liquefaction potential assessment of layered soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 993-1012, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06031-9
    DOI: 10.1007/s11069-023-06031-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06031-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06031-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Huang & Miao Yu, 2013. "Review of soil liquefaction characteristics during major earthquakes of the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2375-2384, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Hua Bao & Guan-Lin Ye & Bin Ye, 2014. "Explanation of liquefaction in after shock of the 2011 great east Japan earthquake using numerical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1881-1897, December.
    2. Karen E Engel, 2016. "Talcahuano, Chile, in the wake of the 2010 disaster: A vulnerable middle?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1057-1081, January.
    3. Domenico Lombardi & Subhamoy Bhattacharya, 2014. "Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1749-1770, September.
    4. Filippo Santucci de Magistris & Giovanni Lanzano & Giovanni Forte & Giovanni Fabbrocino, 2014. "A peak acceleration threshold for soil liquefaction: lessons learned from the 2012 Emilia earthquake (Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1069-1094, November.
    5. Yu Huang & Zhuoqiang Wen, 2015. "Recent developments of soil improvement methods for seismic liquefaction mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1927-1938, April.
    6. Koki Nakao & Shinya Inazumi & Tsuyoshi Takahashi & Supakij Nontananandh, 2022. "Numerical Simulation of the Liquefaction Phenomenon by MPSM-DEM Coupled CAES," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    7. Xiwen Zhang & Xiaowei Tang & Ryosuke Uzuoka, 2015. "Numerical simulation of 3D liquefaction disasters using an automatic time stepping method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1275-1287, June.
    8. Miguel Jaimes & Mauro NiƱo & Eduardo Reinoso, 2015. "Regional map of earthquake-induced liquefaction hazard using the lateral spreading displacement index D LL," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1595-1618, July.
    9. Xiaohua Bao & Bin Ye & Guanlin Ye & Feng Zhang, 2016. "Co-seismic and post-seismic behavior of a wall type breakwater on a natural ground composed of liquefiable layer," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1799-1819, September.
    10. Yu Huang & Liuyuan Zhao, 2018. "The effects of small particles on soil seismic liquefaction resistance: current findings and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 567-579, May.
    11. Xuesong Zhang & Biao He & Mohanad Muayad Sabri Sabri & Mohammed Al-Bahrani & Dmitrii Vladimirovich Ulrikh, 2022. "Soil Liquefaction Prediction Based on Bayesian Optimization and Support Vector Machines," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    12. Karen E Engel, 2016. "Talcahuano, Chile, in the wake of the 2010 disaster: A vulnerable middle?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1057-1081, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06031-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.