IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i1d10.1007_s11069-023-06023-9.html
   My bibliography  Save this article

Probabilistic assessment of seismically triggered landslide hazard for Uttarakhand (India) in the Western Himalayas

Author

Listed:
  • Kunal Gupta

    (Indian Institute of Technology Indore)

  • Neelima Satyam

    (Indian Institute of Technology Indore)

  • Vaasu Gupta

    (Thapar Institute of Engineering and Technology)

Abstract

Landslides are a major cause of earthquake damage, and the ability to anticipate seismically triggered landslide displacement is critical for seismic hazard assessment. The necessity for efficient measures for preventing and minimizing the damage caused by co-seismic landslides has prompted the development of innovative approaches for assessing areas exposed to seismically induced landslides at a regional scale. Uttarakhand is highly seismically active, and major geological formations of this region are heavily jointed or fractured. Landslides are common in this area, and the risk of earthquake-induced landslides is particularly significant due to the region's strong seismicity. The present study incorporated a combination of a probabilistic approach and modified Newmark’s method to obtain seismically induced landslide susceptibility maps. Firstly, a well-established probabilistic seismic hazard assessment method was utilized to calculate the probability of occurrence for various levels of earthquake shaking in terms of Arias intensity for different time intervals. Then by using an empirical equation based on Newmark’s displacement model, the slope strength demand was evaluated. The resulting slope strength demand values represent the minimal value of resistance required by a slope to maintain the probability of triggering an earthquake-induced landslide below a predetermined threshold. Finally, the spatial distribution of slope strength demand was compared with in-situ critical acceleration values computed using a modified Newmark method to determine slope failure probability. The obtained map presents a detailed demarcation of areas that will be affected by co-seismic landslide hazards in the future.

Suggested Citation

  • Kunal Gupta & Neelima Satyam & Vaasu Gupta, 2023. "Probabilistic assessment of seismically triggered landslide hazard for Uttarakhand (India) in the Western Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 669-689, August.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06023-9
    DOI: 10.1007/s11069-023-06023-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06023-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06023-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morris Oleng & Zuhal Ozdemir & Kypros Pilakoutas, 2024. "Co-seismic and rainfall-triggered landslide hazard susceptibility assessment for Uganda derived using fuzzy logic and geospatial modelling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14049-14082, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06023-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.