IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i1d10.1007_s11069-023-06018-6.html
   My bibliography  Save this article

Predicting the magnitude of injection-induced earthquakes using machine learning techniques

Author

Listed:
  • Javad N. Rashidi

    (University of Tehran)

  • Mehdi Ghassemieh

    (University of Tehran)

Abstract

Predicting the magnitude of induced earthquakes by underground injection is a critical strategy for risk assessment. This paper proposes the application of three machine learning techniques—support vector machine, probabilistic neural network, and AdaBoost algorithm—to predict the magnitude of the largest injection-induced earthquake (M) within a predetermined period. These machine learning techniques are used to model the relationships between ten input parameters—six seismicity indicators and four inputs related to injection wells—and earthquake magnitude classes (M

Suggested Citation

  • Javad N. Rashidi & Mehdi Ghassemieh, 2023. "Predicting the magnitude of injection-induced earthquakes using machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 545-570, August.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06018-6
    DOI: 10.1007/s11069-023-06018-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06018-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06018-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Zöller & S. Hainzl & J. Kurths & J. Zschau, 2002. "A Systematic Test on Precursory Seismic Quiescence in Armenia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 245-263, July.
    2. Cornelius Langenbruch & Matthew Weingarten & Mark D. Zoback, 2018. "Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. K. M. Asim & F. Martínez-Álvarez & A. Basit & T. Iqbal, 2017. "Earthquake magnitude prediction in Hindukush region using machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 471-486, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Hsuan Wu & John Rundle & Chien-chih Chen, 2015. "Critical parameter estimates for earthquake forecast using PI migration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1357-1371, March.
    2. Jiaqi Zhang & Xijun He, 2023. "Earthquake magnitude prediction using a VMD-BP neural network model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 189-205, May.
    3. Jaime de-Miguel-Rodríguez & Antonio Morales-Esteban & María-Victoria Requena-García-Cruz & Beatriz Zapico-Blanco & María-Luisa Segovia-Verjel & Emilio Romero-Sánchez & João Manuel Carvalho-Estêvão, 2022. "Fast Seismic Assessment of Built Urban Areas with the Accuracy of Mechanical Methods Using a Feedforward Neural Network," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    4. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    5. Yong Mu & Ying Li & Ran Yan & Pingping Luo & Zhe Liu & Yingying Sun & Shuangtao Wang & Wei Zhu & Xianbao Zha, 2023. "Analysis of the Ongoing Effects of Disasters in Urbanization Process and Climate Change: China’s Floods and Droughts," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    6. Mendy Bengoubou-Valérius & Dominique Gibert, 2013. "Bootstrap determination of the reliability of b-values: an assessment of statistical estimators with synthetic magnitude series," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 443-459, January.
    7. Amna Hafeez & Muhsan Ehsan & Ayesha Abbas & Munawar Shah & Rasim Shahzad, 2022. "Machine learning-based thermal anomalies detection from MODIS LST associated with the Mw 7.7 Awaran, Pakistan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2097-2115, March.
    8. Vera Wendler-Bosco & Charles Nicholson, 2022. "Modeling the economic impact of incoming tropical cyclones using machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 487-518, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:1:d:10.1007_s11069-023-06018-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.