IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05883-5.html
   My bibliography  Save this article

Methods for representing regional disaster recovery estimates: modeling approaches and assessment tools for improving emergency planning and preparedness

Author

Listed:
  • Andrew Deelstra

    (University of Victoria)

  • David N. Bristow

    (University of Victoria)

Abstract

Earthquakes and other natural hazards can cause significant damage to structures and critical lifeline systems. To effectively prepare for disasters, planners and emergency managers can use modeling to assess the impacts that a disaster could have at a municipal and regional level. Modeling approaches are often technically complex and require a great deal of data and expertise to develop and assess. Technical assessments are immensely valuable for providing a detailed understanding of a system, but their complexity makes it challenging to provide opportunities for engagement with a variety of audiences and to compare different scenarios and their effects on a region. The work presented here seeks to demonstrate multiple assessment methods and their utility for planning purposes by using a model that tracks infrastructure system dependencies, repair times, and resource requirements. The assessment methods include developing recovery curves that can be used to assess outage effects on communities, ranking recovery times for different zones to describe areas that are relatively more or less at risk after a disaster, and comparing system recovery time to repair time to assess internal and external dependencies. This work provides an overview of the modeling approach and its representation of water, wastewater, power, and road and highway systems. A case study of a simulated earthquake and its effect on the Metro Vancouver region of British Columbia, Canada, is also presented and examples of the utility of each assessment methodology are detailed. The goal of this work is to provide additional resources for planners and policy makers so that they are equipped to make decisions that best protect their communities.

Suggested Citation

  • Andrew Deelstra & David N. Bristow, 2023. "Methods for representing regional disaster recovery estimates: modeling approaches and assessment tools for improving emergency planning and preparedness," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 779-802, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05883-5
    DOI: 10.1007/s11069-023-05883-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05883-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05883-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom M. Logan & Seth D. Guikema, 2020. "Reframing Resilience: Equitable Access to Essential Services," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1538-1553, August.
    2. Enrico Creaco & Marco Franchini & Stefano Alvisi, 2010. "Optimal Placement of Isolation Valves in Water Distribution Systems Based on Valve Cost and Weighted Average Demand Shortfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4317-4338, December.
    3. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    4. Roshanak Nateghi & Seth D. Guikema & Steven M. Quiring, 2011. "Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1897-1906, December.
    5. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    6. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sherley Dorothie Pierre & Maíra Catharina Ramos & Helena Eri Shimizu, 2024. "What Are the Best Practices for Nursing Care during an Earthquake? A Scoping Review," IJERPH, MDPI, vol. 21(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Mitsova & Ann-Margaret Esnard & Alka Sapat & Betty S. Lai, 2018. "Socioeconomic vulnerability and electric power restoration timelines in Florida: the case of Hurricane Irma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 689-709, November.
    2. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    4. Berk A. Alpay & David Wanik & Peter Watson & Diego Cerrai & Guannan Liang & Emmanouil Anagnostou, 2020. "Dynamic Modeling of Power Outages Caused by Thunderstorms," Forecasting, MDPI, vol. 2(2), pages 1-12, May.
    5. Hannah Lobban & Yasser Almoghathawi & Nazanin Tajik & Kash Barker, 2021. "Community vulnerability perspective on robust protection planning in interdependent infrastructure networks," Journal of Risk and Reliability, , vol. 235(5), pages 798-813, October.
    6. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.
    8. Jichao He & David W. Wanik & Brian M. Hartman & Emmanouil N. Anagnostou & Marina Astitha & Maria E. B. Frediani, 2017. "Nonparametric Tree‐Based Predictive Modeling of Storm Outages on an Electric Distribution Network," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 441-458, March.
    9. Shen, Lijuan & Tang, Yanlin & Tang, Loon Ching, 2021. "Understanding key factors affecting power systems resilience," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Phylicia Cicilio & David Glennon & Adam Mate & Arthur Barnes & Vishvas Chalishazar & Eduardo Cotilla-Sanchez & Bjorn Vaagensmith & Jake Gentle & Craig Rieger & Richard Wies & Mohammad Heidari Kapourch, 2021. "Resilience in an Evolving Electrical Grid," Energies, MDPI, vol. 14(3), pages 1-25, January.
    11. Christine L. Berner & Andrea Staid & Roger Flage & Seth D. Guikema, 2017. "The Use of Simulation to Reduce the Domain of “Black Swans” with Application to Hurricane Impacts to Power Systems," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1879-1897, October.
    12. Joost R. Santos & Lucia Castro Herrera & Krista Danielle S. Yu & Sheree Ann T. Pagsuyoin & Raymond R. Tan, 2014. "State of the Art in Risk Analysis of Workforce Criticality Influencing Disaster Preparedness for Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1056-1068, June.
    13. Diana Mitsova & Monica Escaleras & Alka Sapat & Ann-Margaret Esnard & Alberto J. Lamadrid, 2019. "The Effects of Infrastructure Service Disruptions and Socio-Economic Vulnerability on Hurricane Recovery," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    14. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    15. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    16. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    17. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    18. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    19. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    20. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05883-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.