IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05705-0.html
   My bibliography  Save this article

From the geodynamic aspect to earthquake potential hazard analysis of Liwa city and its surrounding

Author

Listed:
  • Wahyu Triyoso

    (Bandung Institute of Technology)

  • Aris Suwondo

    (Meteorology, Climatology, and Geophysical Agency)

Abstract

The Liwa area is near the active shear fault of the Sumatra Fault Zone (SFZ), with a right lateral mechanism where the Kumering segment crosses this area. The geodynamic simulation results based on the pre-seismic modeling using the slip rate input of a recent study, Liwa, and its surroundings show a comparatively high compression level. The seismic moment rate estimation based on the present-day surface strain data shows alignment and consistency with the pre-seismic modeling result and the previous correlation dimension (DC) analysis. The high DC indicated that the Kumering segment indicates a relatively high-stress level. The finding also aligns with the suggestion based on the previous result that more frequent large strike-slip earthquakes occur since the recent study found that the slip is faster than the previous one. And it is consistent with the historical records; Liwa has a minimum of 3 times experienced destructive earthquakes, which occurred in 1908, 1933, and 1994. Although based on a deterministic hazard analysis point of view, the zone around the SFZ will experience the most significant ground shaking since it is close to the source. However, the Probabilistic Seismic Hazard Analysis (PSHA) studied around the southern part of Sumatra Island, especially in areas close to the coast boundary, shows that the shaking caused by the source of the subduction and intermediate depth is more frequent than that of the SFZ source. As the city of Liwa is located near the Kumering Segment and relatively close to the shoreline, evaluating the Seismic Hazard Function (SHF) by integrating megathrust, SFZ, and medium depth sources is necessary. The amplification analysis in the previous study using Liwa’s HVSR method showed the most considerable amplification value. Thus, this study intends to evaluate the potential for earthquake hazards based on the probability of integrated sources of megathrust, SFZ, and intermediate depth to deep and deterministic based on SFZ sources around the city of Liwa. The earthquake intensity (MMI) estimation at the surface based on the probabilistic to deterministic point of view is in the range of VI to XI. Therefore, it has the potential to reach the maximum MMI scale. The result of this study might be very beneficial in better understanding the future seismic hazard study and mitigation analysis.

Suggested Citation

  • Wahyu Triyoso & Aris Suwondo, 2023. "From the geodynamic aspect to earthquake potential hazard analysis of Liwa city and its surrounding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1329-1344, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05705-0
    DOI: 10.1007/s11069-022-05705-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05705-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05705-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ozgun Konca & Jean-Philippe Avouac & Anthony Sladen & Aron J. Meltzner & Kerry Sieh & Peng Fang & Zhenhong Li & John Galetzka & Jeff Genrich & Mohamed Chlieh & Danny H. Natawidjaja & Yehuda Bock & , 2008. "Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence," Nature, Nature, vol. 456(7222), pages 631-635, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Priest & Chris Goldfinger & Kelin Wang & Robert Witter & Yinglong Zhang & António Baptista, 2010. "Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 27-73, July.
    2. Muhammad Taufiq Rafie & David P. Sahara & Phil R. Cummins & Wahyu Triyoso & Sri Widiyantoro, 2023. "Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3401-3425, April.
    3. H. Taubenböck & N. Goseberg & G. Lämmel & N. Setiadi & T. Schlurmann & K. Nagel & F. Siegert & J. Birkmann & K.-P. Traub & S. Dech & V. Keuck & F. Lehmann & G. Strunz & H. Klüpfel, 2013. "Risk reduction at the “Last-Mile”: an attempt to turn science into action by the example of Padang, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 915-945, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05705-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.