IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i2d10.1007_s11069-022-05472-y.html
   My bibliography  Save this article

Conceptualizing a probabilistic risk and loss assessment framework for wildfires

Author

Listed:
  • Negar Elhami-Khorasani

    (University at Buffalo)

  • Hamed Ebrahimian

    (University of Nevada)

  • Lawrence Buja

    (University of Nevada)

  • Susan L. Cutter

    (University of South Carolina)

  • Branko Kosovic

    (National Center for Atmospheric Research)

  • Neil Lareau

    (University of Nevada)

  • Brian J. Meacham

    (Meacham Associates)

  • Eric Rowell

    (Desert Research Institute)

  • Ertugrul Taciroglu

    (University of California)

  • Matthew P. Thompson

    (USDA Forest Service, Rocky Mountain Research Station)

  • Adam C. Watts

    (USDA Forest Service, Pacific Wildland Fire Sciences Laboratory)

Abstract

Wildfires are an essential part of a healthy ecosystem, yet the expansion of the wildland-urban interface, combined with climatic changes and other anthropogenic activities, have led to the rise of wildfire hazards in the past few decades. Managing future wildfires and their multi-dimensional impacts requires moving from traditional reactive response to deploying proactive policies, strategies, and interventional programs to reduce wildfire risk to wildland-urban interface communities. Existing risk assessment frameworks lack a unified analytical method that properly captures uncertainties and the impact of decisions across social, ecological, and technical systems, hindering effective decision-making related to risk reduction investments. In this paper, a conceptual probabilistic wildfire risk assessment framework that propagates modeling uncertainties is presented. The framework characterizes the dynamic risk through spatial probability density functions of loss, where loss can include different decision variables, such as physical, social, economic, environmental, and health impacts, depending on the stakeholder needs and jurisdiction. The proposed approach consists of a computational framework to propagate and integrate uncertainties in the fire scenarios, propagation of fire in the wildland and urban areas, damage, and loss analyses. Elements of this framework that require further research are identified, and the complexity in characterizing wildfire losses and the need for an analytical-deliberative process to include the perspectives of the spectrum of stakeholders are discussed.

Suggested Citation

  • Negar Elhami-Khorasani & Hamed Ebrahimian & Lawrence Buja & Susan L. Cutter & Branko Kosovic & Neil Lareau & Brian J. Meacham & Eric Rowell & Ertugrul Taciroglu & Matthew P. Thompson & Adam C. Watts, 2022. "Conceptualizing a probabilistic risk and loss assessment framework for wildfires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1153-1169, November.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05472-y
    DOI: 10.1007/s11069-022-05472-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05472-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05472-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poulin Thomas E, 2009. "Review of Social Vulnerability to Disasters," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 6(1), pages 1-4, October.
    2. Karin L. Riley & Matthew P. Thompson & Joe H. Scott & Julie W. Gilbertson-Day, 2018. "A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies," Resources, MDPI, vol. 7(1), pages 1-26, January.
    3. Crystal Kolden, 2020. "Wildfires: count lives and homes, not hectares burnt," Nature, Nature, vol. 586(7827), pages 9-9, October.
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    3. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    4. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    5. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    6. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    7. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    8. Yi Gu & Jinyu Sun & Jianming Cai & Yanwen Xie & Jiahao Guo, 2024. "Urban Planning Perspective on Food Resilience Assessment and Practice in the Zhengzhou Metropolitan Area, China," Land, MDPI, vol. 13(10), pages 1-27, October.
    9. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    10. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    11. Maximiliano Oportus & Rodrigo Cienfuegos & Alejandro Urrutia & Rafael Aránguiz & Patricio A. Catalán & Matías A. Hube, 2020. "Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 367-406, August.
    12. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    13. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    14. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.
    15. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    16. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    17. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    18. Frederico Fernandes Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2024. "Socio-geoenvironmental vulnerability index (SGeoVI) derived from hybrid modeling related to populations at-risk to landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8121-8151, July.
    19. Ella Furness & Harry Nelson, 2016. "Are human values and community participation key to climate adaptation? The case of community forest organisations in British Columbia," Climatic Change, Springer, vol. 135(2), pages 243-259, March.
    20. Susanne Moser & Margaret Davidson, 2016. "The third national climate assessment’s coastal chapter: the making of an integrated assessment," Climatic Change, Springer, vol. 135(1), pages 127-141, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05472-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.