Impact of the moisture and land surface processes on the sustenance of the cyclonic storm Yemyin over land using the WRF-ARW model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-022-05399-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Krishna Osuri & U. Mohanty & A. Routray & Makarand Kulkarni & M. Mohapatra, 2012. "Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1337-1359, September.
- M. Mohapatra & G. Mandal & B. Bandyopadhyay & Ajit Tyagi & U. Mohanty, 2012. "Classification of cyclone hazard prone districts of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1601-1620, September.
- Greeshma Mohan & C. Srinivas & C. Naidu & R. Baskaran & B. Venkatraman, 2015. "Real-time numerical simulation of tropical cyclone Nilam with WRF: experiments with different initial conditions, 3D-Var and Ocean Mixed Layer Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 597-624, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pritam Ghosh & Asraful Alam & Nilanjana Ghosal & Debodatta Saha, 2021. "A Geospatial Analysis of Temporary Housing Inequality among Socially Marginalized and Privileged Groups in India," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 798-819, June.
- A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
- S. Fadnavis & Medha Deshpande & Sachin Ghude & P. Ernest Raj, 2014. "Simulation of severe thunder storm event: a case study over Pune, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 927-943, June.
- Nasreen Akter, 2022. "Tropical cyclogenesis associated with premonsoon climatological dryline over the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2625-2647, July.
- Indrajit Ghosh & Sukhen Das & Nabajit Chakravarty, 2022. "Anomaly temperature in the genesis of tropical cyclone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1477-1503, November.
- Usha Das & Souvik Ghosh, 2020. "Factors driving farmers’ knowledge on climate change in a climatically vulnerable state of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1419-1434, July.
- Raghu Nadimpalli & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & M. M. Nageswararao & S. Kiran Prasad, 2016. "Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1771-1795, April.
- Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.
- Minhyeop Kang & Kyungnam Ko & Minyeong Kim, 2020. "Verification of the Reliability of Offshore Wind Resource Prediction Using an Atmosphere–Ocean Coupled Model," Energies, MDPI, vol. 13(1), pages 1-15, January.
- Chandra Bahinipati & Unmesh Patnaik, 2015. "The damages from climatic extremes in India: do disaster-specific and generic adaptation measures matter?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 157-177, January.
- Saudamini Das, 2019. "Evaluating climate change adaptation through evacuation decisions: a case study of cyclone management in India," Climatic Change, Springer, vol. 152(2), pages 291-305, January.
- Marianna Rodrigues Gullo Cavalcante & Priscila Luz Barcellos & Marcio Cataldi, 2020. "Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I—calibration watershed through hydrological SMAP model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1117-1134, July.
- Unmesh Patnaik & Prasun Kumar Das & Chandra Sekhar Bahinipati, 2016. "Coping with Climatic Shocks: Empirical Evidence from Rural Coastal Odisha, India," Global Business Review, International Management Institute, vol. 17(1), pages 161-175, February.
- Nafiseh Pegahfar & Maryam Gharaylou & Mohammad Hossein Shoushtari, 2022. "Assessing the performance of the WRF model cumulus parameterization schemes for the simulation of five heavy rainfall events over the Pol-Dokhtar, Iran during 1999–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 253-279, May.
- Tanvir Islam & Prashant Srivastava & Miguel Rico-Ramirez & Qiang Dai & Manika Gupta & Sudhir Singh, 2015. "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1473-1495, April.
- A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.
- Raja Boragapu & Pulak Guhathakurta & O. P. Sreejith, 2023. "Tropical cyclone vulnerability assessment for India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3123-3143, July.
- R. Chandrasekar & C. Balaji, 2016. "Impact of physics parameterization and 3DVAR data assimilation on prediction of tropical cyclones in the Bay of Bengal region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 223-247, January.
More about this item
Keywords
Cyclone; Re-intensification; Transport of moisture; Soil moisture; Land surface processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05399-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.