IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i2d10.1007_s11069-020-04335-8.html
   My bibliography  Save this article

The 6–7 July 2010 meteotsunami along the coast of Portugal: insights from data analysis and numerical modelling

Author

Listed:
  • Jihwan Kim

    (Rua C Do Aeroporto)

  • Rachid Omira

    (Rua C Do Aeroporto
    Faculdade de Ciências da Universidade de Lisboa)

Abstract

On 6 and 7 July 2010, uncommon sea waves were observed along the coast of Portugal. The Portuguese tide gauge network recorded the sea-level signals showing tsunami-like waves of heights varying from 0.14 to 0.6 m (crest-to-trough) and of periods in the range of 30 to 60 min. Analysis of both oceanic and atmospheric data revealed the occurrence of a meteotsunami in the night of July 6th that propagated from Lagos, south, up to Viana, north. Here, we present the first investigation of the 2010 meteotsunami that struck the coast of Portugal. We use the atmospheric pressure data to force the sea surface and numerically generate the 2010 meteotsunami. We then simulate the 2010 meteotsunami propagation over high-resolution bathymetric models using a validated nonlinear shallow water code. The comparison of the simulated waveforms with the records shows satisfactory agreement of wave heights and periods in most stations. Taking the 2010 event as a reference of meteotsunamis along the Portuguese coast, we further provide an insight into the meteotsunami hazard posed by events propagating from south to north of the country. This is done by considering a 2D Gaussian-shape pressure disturbance that propagates along the shelf under varying conditions of speed and incident angle. This allows identifying “hot spots” on the coast of Portugal where the focus of meteotsunami energy is favourable. Our results suggest that meteotsunamis present a real threat on the highly occupied Portuguese coast and therefore should be considered in tsunami hazard and forecasting strategies of the NE Atlantic countries.

Suggested Citation

  • Jihwan Kim & Rachid Omira, 2021. "The 6–7 July 2010 meteotsunami along the coast of Portugal: insights from data analysis and numerical modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1397-1419, March.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04335-8
    DOI: 10.1007/s11069-020-04335-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04335-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04335-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Frère & C. Daubord & A. Gailler & H. Hébert, 2014. "Sea level surges of June 2011 in the NE Atlantic Ocean: observations and possible interpretation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 179-196, October.
    2. Emile Okal & Johan Visser & Coenraad Beer, 2014. "The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 251-268, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Cheng & Juan Horrillo & Richards Sunny, 2022. "Numerical analysis of meteotsunamis in the Northeastern Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1719-1734, February.
    2. Ivica Vilibić & Alexander B. Rabinovich & Eric J. Anderson, 2021. "Special issue on the global perspective on meteotsunami science: editorial," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1087-1104, March.
    3. Jihwan Kim & Byoung-Ju Choi & Rachid Omira, 2022. "On the Greenspan resurgence of meteotsunamis in the Yellow Sea—insights from the newly discovered 11–12 June 2009 event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1323-1340, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Hossein Kazeminezhad & Ivica Vilibić & Cléa Denamiel & Parvin Ghafarian & Samaneh Negah, 2021. "Weather radar and ancillary observations of the convective system causing the northern Persian Gulf meteotsunami on 19 March 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1747-1769, March.
    2. Emile A. Okal, 2021. "On the possibility of seismic recording of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1125-1147, March.
    3. Viacheslav K. Gusiakov, 2021. "Meteotsunamis at global scale: problems of event identification, parameterization and cataloguing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1105-1123, March.
    4. Amir Salaree & Reza Mansouri & Emile A. Okal, 2018. "The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: field survey and simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1277-1307, February.
    5. Ivica Vilibić & Cléa Denamiel & Petra Zemunik & Sebastian Monserrat, 2021. "The Mediterranean and Black Sea meteotsunamis: an overview," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1223-1267, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04335-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.