Landslide detection using visualization techniques for deep convolutional neural network models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-021-04838-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sanja Bernat Gazibara & Martin Krkač & Snježana Mihalić Arbanas, 2019. "Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia)," Journal of Maps, Taylor & Francis Journals, vol. 15(2), pages 773-779, July.
- Kemal Hacıefendioğlu & Hasan Basri Başağa & Gökhan Demir, 2021. "Automatic detection of earthquake-induced ground failure effects through Faster R-CNN deep learning-based object detection using satellite images," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 383-403, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu Huang & Jianqiang Zhang & Lili Zhang & Zaiyang Ming & Haiqing He & Rong Chen & Yonggang Ge & Rongkun Liu, 2023. "How Spatial Resolution of Remote Sensing Image Affects Earthquake Triggered Landslide Detection: An Example from 2022 Luding Earthquake, Sichuan, China," Land, MDPI, vol. 12(3), pages 1-19, March.
- Chong Niu & Kebo Ma & Xiaoyong Shen & Xiaoming Wang & Xiao Xie & Lin Tan & Yong Xue, 2023. "Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images," Land, MDPI, vol. 12(2), pages 1-12, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
- Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
More about this item
Keywords
Deep learning method; Convolutional neural networks; VGG-19; Resnet-50; Inception-V3; GradCAM; ScoreCAM; Landslide;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04838-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.