IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i3d10.1007_s11069-021-04816-4.html
   My bibliography  Save this article

Heat risk assessment based on mobile phone data: case study of Bratislava, Slovakia

Author

Listed:
  • Juraj Holec

    (Slovak Hydrometeorological Institute)

  • Martin Šveda

    (Comenius University in Bratislava
    Institute of Geography)

  • Daniel Szatmári

    (Institute of Geography)

  • Ján Feranec

    (Institute of Geography)

  • Hana Bobáľová

    (Comenius University in Bratislava)

  • Monika Kopecká

    (Institute of Geography)

  • Pavel Šťastný

    (Slovak Hydrometeorological Institute)

Abstract

The aim of this interdisciplinary study is to assess the heat risk for Bratislava. The following layers were created to compute the risk index: the hazard layer of air temperature, a mitigation layer of tree vegetation, an exposure layer of population and a vulnerability layer of individuals over 65 years of age. The MUKLIMO_3 model was used to evaluate the field of mean surface air temperature at 9 PM during selected days of the summer heat wave in August 2018. The tree vegetation layer, in the form of percentage per grid cell, was derived from Sentinel-2 satellite data. Population density data are based on mobile positioning data, and elderly population data are based on a gridded database from the statistical census. Input layers were unified into a resolution of 500 × 500 m, and the heat risk index was calculated by summation of the weighted input layers. The results reflect the variability of the population and the elderly population within the city, as well as the variability of the temperature field, which is caused by the joint effect of an urban heat island and topography. The highest values of risk index occur within the broader city centre, with specific hot spots at several places.

Suggested Citation

  • Juraj Holec & Martin Šveda & Daniel Szatmári & Ján Feranec & Hana Bobáľová & Monika Kopecká & Pavel Šťastný, 2021. "Heat risk assessment based on mobile phone data: case study of Bratislava, Slovakia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3099-3120, September.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04816-4
    DOI: 10.1007/s11069-021-04816-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04816-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04816-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Szatmári & Monika Kopecká & Ján Feranec, 2022. "Accuracy Assessment of the Building Height Copernicus Data Layer: A Case Study of Bratislava, Slovakia," Land, MDPI, vol. 11(4), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    2. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    3. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    4. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    5. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    6. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    7. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    8. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    9. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    10. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    11. Qunshan Zhao & Elizabeth A. Wentz, 2016. "A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research," Data, MDPI, vol. 1(1), pages 1-9, June.
    12. Wenwen Cheng & J. O. Spengler & Robert D. Brown, 2020. "A Comprehensive Model for Estimating Heat Vulnerability of Young Athletes," IJERPH, MDPI, vol. 17(17), pages 1-11, August.
    13. Shalin Bidassey-Manilal & Caradee Yael Wright & Thandi Kapwata & Joyce Shirinde, 2020. "A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    14. Yuan-Bin Cai & Ke Li & Yan-Hong Chen & Lei Wu & Wen-Bin Pan, 2021. "The Changes of Heat Contribution Index in Urban Thermal Environment: A Case Study in Fuzhou," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    15. Leeann Kuehn & Sabrina McCormick, 2017. "Heat Exposure and Maternal Health in the Face of Climate Change," IJERPH, MDPI, vol. 14(8), pages 1-13, July.
    16. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    17. Mabon, Leslie & Shih, Wan-Yu, 2018. "What might ‘just green enough’ urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan," World Development, Elsevier, vol. 107(C), pages 224-238.
    18. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    19. Rehana Shrestha & Johannes Flacke & Javier Martinez & Martin Van Maarseveen, 2016. "Environmental Health Related Socio-Spatial Inequalities: Identifying “Hotspots” of Environmental Burdens and Social Vulnerability," IJERPH, MDPI, vol. 13(7), pages 1-23, July.
    20. Yizhou Wu & Yueer Wu & Yaxin Pan, 2024. "Sustainability Optimization Method of Built Environment with Integrated Physical Environment and Virtual Perception Simulation: A Case Study of Campus Open Space," Sustainability, MDPI, vol. 16(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04816-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.