IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i3d10.1007_s11069-021-04805-7.html
   My bibliography  Save this article

Landslide zonation and assessment of Farizi watershed in northeastern Iran using data mining techniques

Author

Listed:
  • Mahnaz Naemitabar

    (Hakim Sabzevari University)

  • Mohammadali Zanganeh Asadi

    (Hakim Sabzevari University)

Abstract

A landslide is a geomorphological hazard with significant ecological and economic damages. The present study aimed to identify landslide-prone areas in Farizi watershed via the Support Vector Machine (SVM), the boosted regression trees (BRT) model, a Logistic Model Tree (LMT), and the Random Forest (RF) algorithm with high computability. The effects on landslide occurrences in this study include altitude, slope, slope direction, distance to road, lithology, distance to waterway, land use, distance to fault, slope cross-section profile, slope longitudinal profile, precipitation, topographic wetness index, and soil layers. To use the soil layer, texture, bulk density, permeability, structure, and plasticity were conducted for analyses of soil physical properties. Geomorphologists examined each parameter according to its effect size on the landslide hazards and used it as a raster as background image ror other layers for the main layers in landslide susceptibility zoning. In order to evaluate the results of the models, data analysis was based on the calculation of the total area under the ROC curve obtained from 30% of landslides. The results showed that the SVM with the AUC as 0.86 and the RF algorithm with the AUC as 0.89 had better operating characteristic in landslide susceptibility zoning of the studied watershed. Prioritization of effective factors showed that lithology, slope, slope direction, distance to fault, and land use had the highest effects on landslide occurrences in the study area. As a result, our proposed methods can improve prediction performance, and the landslide prediction system can give warnings. Landslide susceptibility assessment is a complex and multistep process that has been studied by many researchers. In this study, the SVM, BRT, LMT, and RF algorithms to assess landslide susceptibility and its performance based on various statistical measurements have been discussed. The SVM map shows a high-risk zone covering 71% of the study area. Also, there are also scattered points in the landslide zone throughout the area. In the landslide susceptibility map extracted from the BRT algorithm, a large part of the high-risk zone covers 51% of the area. In the landslide susceptibility map extracted from the LMT algorithm, the high-risk zone covers 69% of the area, and in the landslide susceptibility map extracted from the RF algorithm, the high-risk covers 61% of the area.

Suggested Citation

  • Mahnaz Naemitabar & Mohammadali Zanganeh Asadi, 2021. "Landslide zonation and assessment of Farizi watershed in northeastern Iran using data mining techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2423-2453, September.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04805-7
    DOI: 10.1007/s11069-021-04805-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04805-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04805-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mutasem Sh. Alkhasawneh & Umi Kalthum Ngah & Lea Tien Tay & Nor Ashidi Mat Isa & Mohammad Subhi Al-Batah, 2014. "Modeling and Testing Landslide Hazard Using Decision Tree," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, February.
    2. Vorpahl, Peter & Elsenbeer, Helmut & Märker, Michael & Schröder, Boris, 2012. "How can statistical models help to determine driving factors of landslides?," Ecological Modelling, Elsevier, vol. 239(C), pages 27-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idris Bello Yamusa & Mohd Suhaili Ismail & Abdulwaheed Tella, 2022. "Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Gonzalez-Ollauri & Slobodan B. Mickovski, 2021. "A Simple GIS-Based Tool for the Detection of Landslide-Prone Zones on a Coastal Slope in Scotland," Land, MDPI, vol. 10(7), pages 1-15, June.
    2. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    3. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    4. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    5. Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
    6. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    7. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    8. Jochen Mayer & Ansgar Thiel, 2014. "Health in Elite Sports from a Salutogenetic Perspective: Athletes' Sense of Coherence," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-11, July.
    9. Daniela Piacentini & Stefano Devoto & Matteo Mantovani & Alessandro Pasuto & Mariacristina Prampolini & Mauro Soldati, 2015. "Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 681-697, August.
    10. L. Lombardo & M. Cama & M. Maerker & E. Rotigliano, 2014. "A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1951-1989, December.
    11. S. Boussouf & T. Fernández & A. B. Hart, 2023. "Landslide susceptibility mapping using maximum entropy (MaxEnt) and geographically weighted logistic regression (GWLR) models in the Río Aguas catchment (Almería, SE Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 207-235, May.
    12. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    13. Weiyu Yu & Nicola A Wardrop & Robert E S Bain & Victor Alegana & Laura J Graham & Jim A Wright, 2019. "Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    14. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.
    15. Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04805-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.