IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04656-2.html
   My bibliography  Save this article

Deformation and fracture at floor area and the correlation with main roof breakage in deep longwall mining

Author

Listed:
  • Chunyuan Li

    (China Academy of Coal Science
    China University of Mining and Technology (Beijing))

  • Jianping Zuo

    (China University of Mining and Technology (Beijing))

  • Yue Shi

    (China University of Mining and Technology (Beijing))

  • Chunchen Wei

    (The University of New South Wales)

  • Yuqing Duan

    (China University of Mining and Technology (Beijing))

  • Yong Zhang

    (China University of Mining and Technology (Beijing))

  • Hong Yu

    (Henan Energy and Chemical Industry Group Co., Ltd)

Abstract

Water inrush at floor area is a natural hazard during coal mining. Especially in the northern coalfield of China, more than 55% of coal mines are threatened by water inrush at floor area. The hazard of water inrush is becoming more serious with increasing mining depth. In this paper, the deformation and failure behavior at floor area in deep longwall mining site were analyzed. The correlation between the floor failure and main roof breakage was studied using kinematics theory. Meanwhile, the impact loads of cantilever beam breakage on the floor area at both longwall face and gob area were calculated. Combining with “Pressure arch hypothesis”, the compression and unloading mechanics processes at floor area were analyzed, and the unloading deformation model of floor structure after the breakage of main roof was established as well. In addition, the correlation between unloading deformation at floor area and the main roof breakage, mining depth and unloading stresses were also obtained. Finally, these studies have been verified by using micro-seismic monitoring data in deep longwall mining site. The results show that the impact loads are proportional to the span and loads of cantilever beam. After the breakage of cantilever beam, the impact loads were transferred to the floor area at longwall face side and gob side, and the rock masses at both sides were failed in compression. Consequently, the position of back arch foot of the pressure arch was rapidly transformed into the contact gangue zone at gob area from the last breakage position of main roof. While as the unloading stress of rock masses inside of the floor pressure arch is increasing, the depth of unloading fracture and heave below longwall face are greater than those before cantilever beam breakage. In addition, the unloading deformation at surface floor increases nonlinearly with the increase in mining depth and unloading stresses.

Suggested Citation

  • Chunyuan Li & Jianping Zuo & Yue Shi & Chunchen Wei & Yuqing Duan & Yong Zhang & Hong Yu, 2021. "Deformation and fracture at floor area and the correlation with main roof breakage in deep longwall mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1731-1755, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04656-2
    DOI: 10.1007/s11069-021-04656-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04656-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04656-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shangxian Yin & Jincai Zhang & Demin Liu, 2015. "A study of mine water inrushes by measurements of in situ stress and rock failures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1961-1979, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Yihong Liu & Hongbao Zhao & Shaoqiang Liu & Wenhao Sun, 2022. "Asymmetric damage mechanism of floor roadway based on zonal damage characteristics of longwall panel floor: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1015-1041, October.
    3. Shengrong Xie & Yiyi Wu & Fangfang Guo & Dongdong Chen & En Wang & Xiao Zhang & Hang Zou & Ruipeng Liu & Xiang Ma & Shijun Li, 2022. "Interaction Mechanism of the Upper and Lower Main Roofs with Different Properties in Close Coal Seams: A Case Study," Energies, MDPI, vol. 15(15), pages 1-21, July.
    4. Pengpeng Wang & Yaodong Jiang & Qingshan Ren, 2022. "Roof Hydraulic Fracturing for Preventing Floor Water Inrush under Multi Aquifers and Mining Disturbance: A Case Study," Energies, MDPI, vol. 15(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herong Gui & Manli Lin, 2016. "Types of water hazards in China coalmines and regional characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1501-1512, November.
    2. Chong Li & Zhijun Xu, 2022. "Numerical Modeling and Investigation of Fault-Induced Water Inrush Hazard under Different Mining Advancing Directions," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    3. Xiaohong Niu & Guorui Feng & Qin Liu & Yanna Han & Ruipeng Qian, 2022. "Numerical investigation on mechanism and fluid flow behavior of goaf water inrush: a case study of Dongyu coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1783-1802, September.
    4. Dan Ma & Xiexing Miao & Haibo Bai & Jihui Huang & Hai Pu & Yu Wu & Guimin Zhang & Jiawei Li, 2016. "Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 73-93, May.
    5. Xiuchang Shi & Guangluo Lyu, 2023. "Mechanism of Bed Separation Water Inrush during the Mining of Extra-Thick Coal Seam under Super-Thick Sandstone Aquifer," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    6. Haitao Yu & Shuyun Zhu & Huadong Xie & Junhua Hou, 2020. "Numerical simulation of water inrush in fault zone considering seepage paths," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1763-1779, November.
    7. Dan Ma & Zilong Zhou & Jiangyu Wu & Qiang Li & Haibo Bai, 2017. "Grain Size Distribution Effect on the Hydraulic Properties of Disintegrated Coal Mixtures," Energies, MDPI, vol. 10(5), pages 1-17, April.
    8. Yanbao Liu & Zhigang Zhang & Wei Xiong & Kai Shen & Quanbin Ba, 2020. "The Influence of the Injected Water on the Underground Coalbed Methane Extraction," Energies, MDPI, vol. 13(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04656-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.