IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1187-d743046.html
   My bibliography  Save this article

Roof Hydraulic Fracturing for Preventing Floor Water Inrush under Multi Aquifers and Mining Disturbance: A Case Study

Author

Listed:
  • Pengpeng Wang

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    Institute of Intelligent Manufacturing and Intelligent Mining, Yuncheng Vocational and Technical University, Yuncheng 054000, China)

  • Yaodong Jiang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Qingshan Ren

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

Water inrush disasters from the coal seam floor occur frequently due to the high water pressure of the Ordovician limestone aquifer, multiple aquifers and strong mining disturbance. We presented a model of water-resisting key strata (WRKS) to investigate the mechanism of floor water inrush from multiple aquifers in deep coal mines. Roof hydraulic fracturing (RHF) for controlling floor water inrush and multi-parameter monitoring were proposed and validated in the Xingdong coal mine in Xingtai, Hebei Province. The results indicated that the periodic weighting step of the test working face after RHF was 9.53 m, which was 61.42% less than that of the working face without RHF (24.7 m). The floor failure depth was 30 m, which was 34.4% less than that of the zones without RHF (45.7 m). Hydraulic fracturing weakened the strength of the overlying strata to control the weighting step and reduce the mining disturbance stress, and the stability of the floor WRKS was enhanced, thereby preventing water inrush from the coal seam floor. The research results provide a solution for preventing floor damage and floor water inrush under strong mining disturbance and in complex hydrogeological environments in deep mining.

Suggested Citation

  • Pengpeng Wang & Yaodong Jiang & Qingshan Ren, 2022. "Roof Hydraulic Fracturing for Preventing Floor Water Inrush under Multi Aquifers and Mining Disturbance: A Case Study," Energies, MDPI, vol. 15(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1187-:d:743046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Li & Haibo Bai & Jianjun Wu & Zhanguo Ma & Kai Ma & Guangming Wu & Yabo Du & Shixin He, 2017. "A Cascade Disaster Caused by Geological and Coupled Hydro-Mechanical Factors—Water Inrush Mechanism from Karst Collapse Column under Confining Pressure," Energies, MDPI, vol. 10(12), pages 1-19, November.
    2. Chunyuan Li & Jianping Zuo & Yue Shi & Chunchen Wei & Yuqing Duan & Yong Zhang & Hong Yu, 2021. "Deformation and fracture at floor area and the correlation with main roof breakage in deep longwall mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1731-1755, June.
    3. Xinxin Zhou & Zhenhua Ouyang & Ranran Zhou & Zhenxing Ji & Haiyang Yi & Zhongyi Tang & Bo Chang & Chengcheng Yang & Bingcheng Sun, 2021. "An Approach to Dynamic Disaster Prevention in Strong Rock Burst Coal Seam under Multi-Aquifers: A Case Study of Tingnan Coal Mine," Energies, MDPI, vol. 14(21), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengrong Xie & Yiyi Wu & Fangfang Guo & Dongdong Chen & En Wang & Xiao Zhang & Hang Zou & Ruipeng Liu & Xiang Ma & Shijun Li, 2022. "Interaction Mechanism of the Upper and Lower Main Roofs with Different Properties in Close Coal Seams: A Case Study," Energies, MDPI, vol. 15(15), pages 1-21, July.
    2. Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.
    3. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    4. Yihong Liu & Hongbao Zhao & Shaoqiang Liu & Wenhao Sun, 2022. "Asymmetric damage mechanism of floor roadway based on zonal damage characteristics of longwall panel floor: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1015-1041, October.
    5. Gaizhuo Zhang & Junzhong Guo & Bin Xu & Lulu Xu & Zhenxue Dai & Shangxian Yin & Mohamad Reza Soltanian, 2021. "Quantitative Analysis and Evaluation of Coal Mine Geological Structures Based on Fractal Theory," Energies, MDPI, vol. 14(7), pages 1-14, March.
    6. Yulong Chen & Junwen Zhang & Jianhang Chen & Xuejie Deng, 2022. "Special Issue: Rock Burst Disasters in Coal Mines," Energies, MDPI, vol. 15(13), pages 1-6, July.
    7. Hao Li & Boyang Zhang & Haibo Bai & Jianjun Wu & Qingbin Meng & Ning Xiao & Feng Li & Guangming Wu, 2018. "Surface Water Resource Protection in a Mining Process under Varying Strata Thickness—A Case Study of Buliangou Coal Mine, China," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    8. Dong Xu & Mingshi Gao & Xin Yu, 2022. "Dynamic Response Characteristics of Roadway Surrounding Rock and the Support System and Rock Burst Prevention Technology for Coal Mines," Energies, MDPI, vol. 15(22), pages 1-17, November.
    9. Zhenming Sun & Wenpeng Bao & Mei Li, 2022. "Comprehensive Water Inrush Risk Assessment Method for Coal Seam Roof," Sustainability, MDPI, vol. 14(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1187-:d:743046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.