IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04650-8.html
   My bibliography  Save this article

Automated landslide detection model to delineate the extent of existing landslides

Author

Listed:
  • Yashar Alimohammadlou

    (George Mason University)

  • Burak F. Tanyu

    (George Mason University)

  • Aiyoub Abbaspour

    (George Mason University)

  • Paul L. Delamater

    (University of North Carolina)

Abstract

Landslides are one of the most common natural hazards and cause major socioeconomic impacts worldwide. Identifying the locations of the active or inactive landslides before development may play a major role in identifying areas of high risk. Traditional methods for inventorying landslides involve field surveying and interpretation of photogrammetric data. The advent of recent remote sensing technologies has expedited this process, and as a result, several computer-based algorithms used to identify the locations of past landslides have been proposed. Computer-based analyses provide significant advantages over traditional methods; however, a majority of these computer-based analyses require the user to define the properties of the landslide prior to the search and require supervision and quality assurance. The purpose of this study is to present a simple, new methodology that can be implemented with readily available tools and datasets without the need to supervise the analysis after the parameters regarding landslide morphology are defined for that region. This methodology is referred to as automated landslide detection model (ALDM). Three areas with LiDAR bare earth digital elevation models (DEMs) have been used to test the ALDM, each consisting of a varying range of mapped landslide features. The ALDM results were compared against data obtained from the Pennsylvania Department of Conservation and Natural Resources and landslides that were determined visually from the hillshade map of the study area. The results demonstrate that the ALDM method was able to accurately capture both the landslides and non-landslides in all of the areas evaluated with accuracies of 70% and 92%, respectively. Additionally, the study showed that the proposed ALDM method could be implemented in different regions where landslides of different shapes and sizes could be detected.

Suggested Citation

  • Yashar Alimohammadlou & Burak F. Tanyu & Aiyoub Abbaspour & Paul L. Delamater, 2021. "Automated landslide detection model to delineate the extent of existing landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1639-1656, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04650-8
    DOI: 10.1007/s11069-021-04650-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04650-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04650-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    2. Gabriel Legorreta Paulín & Marcus Bursik & José Hubp & Luis Mejía & Fernando Aceves Quesada, 2014. "A GIS method for landslide inventory and susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, México," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 229-241, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunal Gupta & Neelima Satyam, 2024. "Optimizing seismic hazard inputs for co-seismic landslide susceptibility mapping: a probabilistic analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8459-8481, July.
    2. Deliang Sun & Haijia Wen & Yalan Zhang & Mengmeng Xue, 2021. "An optimal sample selection-based logistic regression model of slope physical resistance against rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1255-1279, January.
    3. Guru Balamurugan & Veerappan Ramesh & Mangminlen Touthang, 2016. "Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 465-488, October.
    4. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    5. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    6. Shao-Hui Peng & Kui Wang, 2015. "Risk evaluation of geological hazards of mountainous tourist area: a case study of Mengshan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 517-529, August.
    7. Gabriel Legorreta Paulín & Marcus Bursik & José Zamorano Orózco & José Figueroa García, 2015. "Landslide susceptibility of volcanic landforms in the Río El Estado watershed, Pico de Orizaba volcano, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 559-574, June.
    8. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    9. Gabriel Legorreta Paulín & Solène Pouget & Marcus Bursik & Fernando Aceves Quesada & Trevor Contreras, 2016. "Comparing landslide susceptibility models in the Río El Estado watershed on the SW flank of Pico de Orizaba volcano, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 127-139, January.
    10. Roberta Plangg Riegel & Darlan Daniel Alves & Bruna Caroline Schmidt & Guilherme Garcia Oliveira & Claus Haetinger & Daniela Montanari Migliavacca Osório & Marco Antônio Siqueira Rodrigues & Daniela M, 2020. "Assessment of susceptibility to landslides through geographic information systems and the logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 497-511, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04650-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.