IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04640-w.html
   My bibliography  Save this article

Interoccurrence times and seismic hazard for upper-crustal volcanic chain earthquakes in El Salvador: are they Poissonian distributed?

Author

Listed:
  • Walter Salazar

    (Catholic University of El Salvador, UNICAES)

Abstract

We study the statistical properties of time intervals between successive earthquakes for a given magnitude in the El Salvador volcanic chain, namely hereafter the interoccurrence times employing both the cumulative Poisson and the Weibull probability distributions. The dataset comprises magnitudes between M 4.0 and 6.93 within the years 1528–2018. We suggest that ITs pose the Weibull distribution for all events and that the Poisson distribution co-exists for ITs longer than the Weibull mean. Based on the probabilities distribution fit, we compute for engineering purposes ground motion and elastic response spectra for 5% damping employing time-dependent and independent seismic hazard models at San Salvador city, observing covariance of less than 7% amongst the models. The disaggregation analysis suggests that a magnitude 6.3 contributes most to the hazard and coincides with the magnitude bin of 6.25–6.50, which has the maximum conditional probability in the time-dependent model.

Suggested Citation

  • Walter Salazar, 2021. "Interoccurrence times and seismic hazard for upper-crustal volcanic chain earthquakes in El Salvador: are they Poissonian distributed?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1443-1465, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04640-w
    DOI: 10.1007/s11069-021-04640-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04640-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04640-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Alexander Chavez Hernandez & Milan Lazecký & Jiří Šebesta & Matúš Bakoň, 2020. "Relation between surface dynamics and remote sensor InSAR results over the Metropolitan Area of San Salvador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3661-3682, September.
    2. T. Huillet & H.-F. Raynaud, 1999. "Rare events in a log-Weibull scenario - Application to earthquake magnitude data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 12(3), pages 457-469, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Ijaz & Syed Muhammad Asim & Alamgir & Muhammad Farooq & Sajjad Ahmad Khan & Sadaf Manzoor, 2020. "A Gull Alpha Power Weibull distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    2. Hasumi, Tomohiro & Akimoto, Takuma & Aizawa, Yoji, 2009. "The Weibull–log Weibull transition of the interoccurrence time statistics in the two-dimensional Burridge–Knopoff Earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 483-490.
    3. Salman Ahmadi & Reza Soodmand Afshar & Mohammad Fathollahy & Kamran Nobakht Vakili, 2023. "Identification of land subsidence hazard in asadabad plain using the PS-InSAR method and its relationship with the geological characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1157-1178, May.
    4. Pisarenko, V.F. & Rodkin, M.V., 2015. "The maximum earthquake in future T years: Checking by a real catalog," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 89-98.
    5. Indranil Ghosh & Saralees Nadarajah, 2017. "On some further properties and application of Weibull-R family of distributions," Papers 1711.00171, arXiv.org.
    6. Indranil Ghosh & Saralees Nadarajah, 2018. "On Some Further Properties and Application of Weibull-R Family of Distributions," Annals of Data Science, Springer, vol. 5(3), pages 387-399, September.
    7. Hasumi, Tomohiro & Akimoto, Takuma & Aizawa, Yoji, 2009. "The Weibull–log Weibull distribution for interoccurrence times of earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 491-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04640-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.