The maximum earthquake in future T years: Checking by a real catalog
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2015.01.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- T. Huillet & H.-F. Raynaud, 1999. "Rare events in a log-Weibull scenario - Application to earthquake magnitude data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 12(3), pages 457-469, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gergely, Attila & Biró, Tamás Sándor & Járai-Szabó, Ferenc & Néda, Zoltán, 2024. "Statistics of earthquakes based on the extended LGGR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
- Indranil Ghosh & Saralees Nadarajah, 2017. "On some further properties and application of Weibull-R family of distributions," Papers 1711.00171, arXiv.org.
- Indranil Ghosh & Saralees Nadarajah, 2018. "On Some Further Properties and Application of Weibull-R Family of Distributions," Annals of Data Science, Springer, vol. 5(3), pages 387-399, September.
- Walter Salazar, 2021. "Interoccurrence times and seismic hazard for upper-crustal volcanic chain earthquakes in El Salvador: are they Poissonian distributed?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1443-1465, June.
- Muhammad Ijaz & Syed Muhammad Asim & Alamgir & Muhammad Farooq & Sajjad Ahmad Khan & Sadaf Manzoor, 2020. "A Gull Alpha Power Weibull distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
- Hasumi, Tomohiro & Akimoto, Takuma & Aizawa, Yoji, 2009. "The Weibull–log Weibull transition of the interoccurrence time statistics in the two-dimensional Burridge–Knopoff Earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 483-490.
- Hasumi, Tomohiro & Akimoto, Takuma & Aizawa, Yoji, 2009. "The Weibull–log Weibull distribution for interoccurrence times of earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 491-498.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:74:y:2015:i:c:p:89-98. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.