IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i3d10.1007_s11069-021-04567-2.html
   My bibliography  Save this article

Hydrological basis of the Devils Lake, North Dakota (USA), terminal lake flood disaster

Author

Listed:
  • P. E. Todhunter

    (University of North Dakota)

Abstract

Devils Lake, a terminal lake in northeast North Dakota (USA), has experienced catastrophic flooding since 1993. From January 31, 1993, to December 31, 2014, lake level rose from 433.62 to 442.44 m, lake area expanded from 179.9 to 653.5 km2, and lake volume increased from 0.70 to 3.80 km3. More than $1 billion ($USD) has been spent in government payments to mitigate direct, primary, tangible flood damages. This paper provides a case study of the hydrological basis of the Devils Lake flood disaster. The unique geomorphic setting, paleoclimatic record, and hydroclimatic conditions of the region are summarized, and a wide range of hydroclimatic data is examined to provide a broad understanding of the physical basis of the flood disaster. The primary cause of the disaster was a transition to a sustained wetter climate that resulted in a dramatic response in basin hydrological variables in 1993. The transition from a long-term dry period to a long-term wet period caused the lake water budget to begin to change from an atmosphere-controlled water budget dominated by precipitation input to an amplifier lake water budget dominated by surface runoff input to the lake. Other important hydrological factors include a nonlinear precipitation–runoff relationship following the long-term drought, fill-spill and fill-merge hydrological behavior that is characteristic of wetland complexes, an increase in the lake area-to-basin area ratio, and the critical role of frozen soils in controlling infiltration and runoff production of spring snowmelt. Engineering works to manage lake volume through two outlets have reduced, but not entirely eliminated, future flood risk.

Suggested Citation

  • P. E. Todhunter, 2021. "Hydrological basis of the Devils Lake, North Dakota (USA), terminal lake flood disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2797-2824, April.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04567-2
    DOI: 10.1007/s11069-021-04567-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04567-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04567-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owen P. McKenna & David M. Mushet & Donald O. Rosenberry & James W. LaBaugh, 2017. "Evidence for a climate-induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region," Climatic Change, Springer, vol. 145(3), pages 273-287, December.
    2. Paul E. Todhunter & Rhonda Fietzek-DeVries, 2016. "Natural hydroclimatic forcing of historical lake volume fluctuations at Devils Lake, North Dakota (USA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1515-1532, April.
    3. Gehendra Kharel & Rebecca Romsdahl & Andrei Kirilenko, 2019. "Managing the wicked problem of Devils Lake flooding along the US–Canada border," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 35(6), pages 938-958, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owen P. McKenna & Samuel R. Kucia & David M. Mushet & Michael J. Anteau & Mark T. Wiltermuth, 2019. "Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    2. Salih Muhammad Awadh & Ahmed H. Al-Sulttani & Zaher Mundher Yaseen, 2022. "Temporal dynamic drought interpretation of Sawa Lake: case study located at the Southern Iraqi region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 619-638, May.
    3. Owen P. McKenna & David M. Mushet & Donald O. Rosenberry & James W. LaBaugh, 2017. "Evidence for a climate-induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region," Climatic Change, Springer, vol. 145(3), pages 273-287, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:3:d:10.1007_s11069-021-04567-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.