IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i2d10.1007_s11069-020-04388-9.html
   My bibliography  Save this article

A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model

Author

Listed:
  • Yonggang Zhang

    (Tongji University
    China University of Mining and Technology
    China Geological Survey)

  • Lining Yang

    (China University of Mining and Technology
    University of Manchester)

Abstract

For water inrush from coal floor, due to different kinds of controlling factors and their internal correlations, the accuracy of prediction model is mostly below expectation. In this paper, it studies on which controlling factors should be selected for water inrush prediction model because all these factors have different influence on water inrush incidents based on the analysis of in situ data. Some factors are proved having limited impacts on water inrush, it is no necessary to collect in situ data of those factors from coal mining work face. Therefore, the workload and expense will decrease. In this paper, an index system of factors influencing water inrush from coal floor is established based on the current water inrush controlling theory and detailed analysis of in situ data obtained from mining regions. Following the Wrapper method in feature selection, 10 main controlling factors were selected from 14 existing indicators which were thought could affect water inrush. After training on dynamic GRU model which is made for water inrush prediction, a comparison among dynamic GRU model and stable SVM and BPMN models turns out the advantages of the previous with a higher accuracy in train, validation and test set against the latter. It is believed GRU model is able to predict water inrush water inrush from coal floor with high accuracy and hence enhances mining safety.

Suggested Citation

  • Yonggang Zhang & Lining Yang, 2021. "A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2027-2043, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04388-9
    DOI: 10.1007/s11069-020-04388-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04388-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04388-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ying & Chiu, Yung-ho & Lin, Tai-Yu, 2019. "Coal production efficiency and land destruction in China's coal mining industry," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuchang Shi & Guangluo Lyu, 2023. "Mechanism of Bed Separation Water Inrush during the Mining of Extra-Thick Coal Seam under Super-Thick Sandstone Aquifer," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    2. Lin, Penghui & Zhang, Limao & Tiong, Robert L.K., 2023. "Multi-objective robust optimization for enhanced safety in large-diameter tunnel construction with interactive and explainable AI," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangqian Wang & Shudong Wang & Yongqiu Xia, 2022. "Evaluation and Dynamic Evolution of the Total Factor Environmental Efficiency in China’s Mining Industry," Energies, MDPI, vol. 15(3), pages 1-19, February.
    2. Ronyastra, I Made & Saw, Lip Huat & Low, Foon Siang, 2024. "Monte Carlo simulation-based financial risk identification for industrial estate as post-mining land usage in Indonesia," Resources Policy, Elsevier, vol. 89(C).
    3. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden, 2023. "Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy," Energies, MDPI, vol. 16(2), pages 1-17, January.
    4. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    5. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    6. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    7. Mohammed Atris, Amani, 2020. "Assessment of oil refinery performance: Application of data envelopment analysis-discriminant analysis," Resources Policy, Elsevier, vol. 65(C).
    8. Li, Ying & Cen, Hongyi & Lin, Tai-Yu & Lin, Yi-Nuo & Chiu, Yung-Ho, 2022. "Sustainable coal mine and coal land development in China," Resources Policy, Elsevier, vol. 79(C).
    9. Michaela Staňková, 2020. "Efficiency Comparison and Efficiency Development of the Metallurgical Industry in the EU: Parametric and Non-parametric Approaches," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 68(4), pages 765-774.
    10. Wu, Peng & Wang, Yiqing & Chiu, Yung-ho & Li, Ying & Lin, Tai-Yu, 2019. "Production efficiency and geographical location of Chinese coal enterprises - undesirable EBM DEA," Resources Policy, Elsevier, vol. 64(C).
    11. Zhang, Lina & Gao, Wanting & Chiu, Yung-ho & Pang, Qinghua & Shi, Zhen & Guo, Zhiqin, 2021. "Environmental performance indicators of China's coal mining industry: A bootstrapping Malmquist index analysis," Resources Policy, Elsevier, vol. 71(C).
    12. Jianhua Huangfu & Wenjuan Zhao & Lei Yu, 2023. "Does Coal Consumption Control Policy Synergistically Control Emissions and Energy Intensity?," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    13. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).
    14. Jing, Zhaorui & Wang, Jinman & Tang, Qian & Liu, Biao & Niu, Hebin, 2021. "Evolution of land use in coal-based cities based on the ecological niche theory: A case study in Shuozhou City, China," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04388-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.