IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v71y2021ics0301420721000088.html
   My bibliography  Save this article

Environmental performance indicators of China's coal mining industry: A bootstrapping Malmquist index analysis

Author

Listed:
  • Zhang, Lina
  • Gao, Wanting
  • Chiu, Yung-ho
  • Pang, Qinghua
  • Shi, Zhen
  • Guo, Zhiqin

Abstract

This research develops a bootstrapped Malmquist environmental performance indicator for exploring the operating efficiency and variability of productivity estimates in China's coal mining industry, as it is the world's largest coal producer with massive undesirable outputs of degraded mining lands and carbon emissions. Taking these undesirable outputs into account, we set up a new value system, called the coal mining environmental performance indicator (CMEPI), by integrating the DEA-based Malmquist production index with a bootstrap method for the first time. We further investigate the bias-corrected CMEPI estimates and their decompositions in coal provinces during 2012–2017 at the regional, areal, and provincial levels and further reveal the characteristic and dynamic evolution of CMEPI estimates and their decompositions by using the Kernel density estimation. The results are as follows. The bias-corrected CMEPI estimates at the regional level as a whole increased by 5.20% during the period due to inferior technological change effects. Low-yield area with a smaller increase rate of technological change needs to be improved. Thus, decision-makers should urgently enhance efficiency change in places such as Hunan, Chongqing, and Jiangxi. Among the low-yield area, Jiangxi and Hubei must alter their path of technological change. Finally, greater attention should focus on promoting the catch-up effect for better regional synergy development.

Suggested Citation

  • Zhang, Lina & Gao, Wanting & Chiu, Yung-ho & Pang, Qinghua & Shi, Zhen & Guo, Zhiqin, 2021. "Environmental performance indicators of China's coal mining industry: A bootstrapping Malmquist index analysis," Resources Policy, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:jrpoli:v:71:y:2021:i:c:s0301420721000088
    DOI: 10.1016/j.resourpol.2021.101991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721000088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.101991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Li, Ying & Chiu, Yung-ho & Lin, Tai-Yu, 2019. "Coal production efficiency and land destruction in China's coal mining industry," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    4. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    5. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    6. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    7. Wu, Peng & Wang, Yiqing & Chiu, Yung-ho & Li, Ying & Lin, Tai-Yu, 2019. "Production efficiency and geographical location of Chinese coal enterprises - undesirable EBM DEA," Resources Policy, Elsevier, vol. 64(C).
    8. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.
    9. Chyan Yang & Tung-Pao Wang, 2016. "Productivity comparison of European airlines: bootstrapping Malmquist indices," Applied Economics, Taylor & Francis Journals, vol. 48(52), pages 5106-5116, November.
    10. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    11. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    12. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    13. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    14. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    15. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    16. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    17. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    18. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    19. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    20. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    21. Kulshreshtha, Mudit & Parikh, Jyoti K., 2002. "Study of efficiency and productivity growth in opencast and underground coal mining in India: a DEA analysis," Energy Economics, Elsevier, vol. 24(5), pages 439-453, September.
    22. Fang, Hong & Wu, Junjie & Zeng, Catherine, 2009. "Comparative study on efficiency performance of listed coal mining companies in China and the US," Energy Policy, Elsevier, vol. 37(12), pages 5140-5148, December.
    23. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    24. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    25. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    26. Seiford, Lawrence M. & Zhu, Joe, 2005. "A response to comments on modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 161(2), pages 579-581, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ying & Cen, Hongyi & Lin, Tai-Yu & Lin, Yi-Nuo & Chiu, Yung-Ho, 2022. "Sustainable coal mine and coal land development in China," Resources Policy, Elsevier, vol. 79(C).
    2. Cun Zhang & Xiaojie Wang & Shangxin Fang & Xutao Shi, 2022. "Construction and Application of VR-AR Teaching System in Coal-Based Energy Education," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    3. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    4. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    5. O.A. Chernova, 2021. "Relative Break-Even as a Determinant of the Dynamic Balance of the Russian Coal Industry," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(2), pages 194-216.
    6. Xuefeng Zheng & Xiufan Zhang & Decheng Fan, 2023. "Research on the Coordinated Development of Innovation Ability and Regional Integration in Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    7. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Nabavieh, Alireza & Gholamiangonabadi, Davoud & Ahangaran, Ali Asghar, 2015. "Dynamic changes in CO2 emission performance of different types of Iranian fossil-fuel power plants," Energy Economics, Elsevier, vol. 52(PA), pages 142-150.
    3. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    4. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    6. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    7. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    8. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    9. Hosseinzadeh, Ahmad & Smyth, Russell & Valadkhani, Abbas & Le, Viet, 2016. "Analyzing the efficiency performance of major Australian mining companies using bootstrap data envelopment analysis," Economic Modelling, Elsevier, vol. 57(C), pages 26-35.
    10. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    11. Sanz-Díaz, María Teresa & Velasco-Morente, Francisco & Yñiguez, Rocío & Díaz-Calleja, Emilio, 2017. "An analysis of Spain's global and environmental efficiency from a European Union perspective," Energy Policy, Elsevier, vol. 104(C), pages 183-193.
    12. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    13. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    14. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    15. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    16. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.
    17. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun & Managi, Shunsuke, 2015. "The enhanced Russell-based directional distance measure with undesirable outputs: Numerical example considering CO2 emissions," Omega, Elsevier, vol. 53(C), pages 30-40.
    18. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    19. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    20. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:71:y:2021:i:c:s0301420721000088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.