IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i3d10.1007_s11069-020-04279-z.html
   My bibliography  Save this article

Wave group focusing in the ocean: estimations using crest velocities and a Gaussian linear model

Author

Listed:
  • Paul Platzer

    (France Énergies Marines
    IPSL, U Paris-Saclay, l’Orme des Merisiers
    IMT Atlantique
    LSCE - Laboratoire des Sciences du Climat et de l’Environnement)

  • Jean-François Filipot

    (France Énergies Marines)

  • Philippe Naveau

    (IPSL, U Paris-Saclay, l’Orme des Merisiers
    LSCE - Laboratoire des Sciences du Climat et de l’Environnement)

  • Pierre Tandeo

    (IMT Atlantique)

  • Pascal Yiou

    (IPSL, U Paris-Saclay, l’Orme des Merisiers
    LSCE - Laboratoire des Sciences du Climat et de l’Environnement)

Abstract

Wave group focusing gives rise to the formation of large gravity waves at the surface of the ocean, some of which are called rogue waves and represent a natural hazard for ships and offshore platforms. For safety purposes, it is crucial to predict when and where these large waves will appear and how large they will be. This work focuses on crest velocities, a quantity that is relatively easy to extract from sea surface elevation fields. It is shown that there is a direct link between crest velocity gradient and wave group linear dispersive focusing. Studying analytically the focusing of one-dimensional Gaussian wave packets under linear evolution makes it possible to derive estimates of quantities at focus, based only on crest velocity measurements. In this way, the focusing time, focusing size and focusing amplitude (relative to instantaneous amplitude) of an isolated Gaussian wave packet can be estimated. Our work is also applicable to second-order non-linear waves. Limitations due to higher-order non-linear effects are studied in numerical simulations of the non-linear Schrödinger equation.

Suggested Citation

  • Paul Platzer & Jean-François Filipot & Philippe Naveau & Pierre Tandeo & Pascal Yiou, 2020. "Wave group focusing in the ocean: estimations using crest velocities and a Gaussian linear model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2431-2449, December.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04279-z
    DOI: 10.1007/s11069-020-04279-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04279-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04279-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasily Titov & Frank Gonzalez & E. Bernard & Marie Eble & Harold Mofjeld & Jean Newman & Angie Venturato, 2005. "Real-Time Tsunami Forecasting: Challenges and Solutions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(1), pages 35-41, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Barranco & Vicente Gracia & Joan Pau Sierra & Hector Perea & Xavier Gironella, 2017. "Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1273-1295, September.
    2. N. Nirupama, 2013. "Tsunami versus storm surge: a brief review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1123-1130, October.
    3. Mark Buckley & Yong Wei & Bruce Jaffe & Steve Watt, 2012. "Inverse modeling of velocities and inferred cause of overwash that emplaced inland fields of boulders at Anegada, British Virgin Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 133-149, August.
    4. F. Dall’Osso & D. Dominey-Howes & C. Tarbotton & S. Summerhayes & G. Withycombe, 2016. "Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA-4 model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1229-1256, September.
    5. P. Whitmore & B. Knight, 2014. "Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 11-23, October.
    6. Yu Huang & Chongqiang Zhu, 2015. "Numerical analysis of tsunami–structure interaction using a modified MPS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2847-2862, February.
    7. Chen-Chieh Feng & Yi-Chen Wang, 2011. "GIScience research challenges for emergency management in Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 597-616, October.
    8. Daniel M. Percival & Donald B. Percival & Donald W. Denbo & Edison Gica & Paul Y. Huang & Harold O. Mofjeld & Michael C. Spillane, 2014. "Automated Tsunami Source Modeling Using the Sweeping Window Positive Elastic Net," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 491-499, June.
    9. M. Ripepe & G. Lacanna, 2024. "Volcano generated tsunami recorded in the near source," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Zhiguo Xu & Shanshan Liang & Mohd Nashriq Bin Abd Rahman & Hongwei Li & Jianyu Shi, 2021. "Historical earthquakes, tsunamis and real-time earthquake monitoring for tsunami advisory in the South China Sea region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 771-793, May.
    11. Charles McCreery, 2005. "Impact of the National Tsunami Hazard Mitigation Program on Operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(1), pages 73-88, May.
    12. Rhett Butler & David Walsh & Kevin Richards, 2017. "Extreme tsunami inundation in Hawai‘i from Aleutian–Alaska subduction zone earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1591-1619, February.
    13. Brian McAdoo & Andrew Moore & Jennifer Baumwoll, 2009. "Indigenous knowledge and the near field population response during the 2007 Solomon Islands tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 73-82, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04279-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.