IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i1d10.1007_s11069-020-04207-1.html
   My bibliography  Save this article

UAV survey and numerical modeling of loess landslides: an example from Zaoling, southern Shanxi Province, China

Author

Listed:
  • Siyuan Ma

    (Institute of Geology, China Earthquake Administration)

  • Jiangbo Wei

    (Xi’an University of Science and Technology
    Xi’an University of Science and Technology)

  • Chong Xu

    (National Institute of Natural Hazards, Ministry of Emergency Management of China (former Institute of Crustal Dynamics, China Earthquake Administration))

  • Xiaoyi Shao

    (Institute of Geology, China Earthquake Administration)

  • Shiyang Xu

    (Lanzhou Institute of Seismology, China Earthquake Administration
    China Earthquake Administration and Gansu Province)

  • Shaofeng Chai

    (Lanzhou Institute of Seismology, China Earthquake Administration
    China Earthquake Administration and Gansu Province)

  • Yulong Cui

    (Anhui University of Science and Technology)

Abstract

This work attempted to reveal the geometric and kinematic characteristics of a loess landslide that occurred at Zaoling, southern Shanxi Province, China, on March 15, 2019. Based on the high-resolution unmanned aerial vehicle survey and DEM data acquired after this event, the topography of the study area was reconstructed to estimate the volumes of the source area and the deposit area of the landslide. Coupled with the high-resolution three-dimensional topographic data, three-dimensional particle flow code was used to simulate the motion process and depositing characteristics of the landslide. Results show that the Zaoling landslide is a deep-seated loess landslide with a projection area of 9844 m2 and the attitude of the sliding surface 355°∠37° (trending and dip). The total volumes of the source zone and accumulation zone are 77,000 and 82,000 m3, respectively. The simulation results show that the whole sliding process lasts about 17 s. The maximum average velocity of the sliding body is 5.12 m/s and the average sliding displacement is 33.3 m. Comparing the depositing thickness obtained from the simulation with the reality shows that the accumulation thickness of the deposit area decreases gradually from the center to both sides. The accumulation characteristics from the simulation are roughly consistent with those of the actual landslide. According to the latest landslide classification system for loess slopes, the Zaoling landslide is a typical rotational slide. It is a typical case for loess landslide studies, in particular, its special failure mechanism and kinematic features.

Suggested Citation

  • Siyuan Ma & Jiangbo Wei & Chong Xu & Xiaoyi Shao & Shiyang Xu & Shaofeng Chai & Yulong Cui, 2020. "UAV survey and numerical modeling of loess landslides: an example from Zaoling, southern Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1125-1140, October.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04207-1
    DOI: 10.1007/s11069-020-04207-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04207-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04207-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ling Xu & Xiaojuan Qiao & Caixia Wu & Javed Iqbal & Fuchu Dai, 2012. "Causes of landslide recurrence in a loess platform with respect to hydrological processes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1657-1670, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    2. Qin Yigen & Yang Genlan & Liu Bangyu & Xu Jinxing, 2024. "Study on deformation and failure mechanism of low-dip red bed slope with soft-hard interbedded structure: a case study of Chishui, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10539-10557, September.
    3. Chenchen Xie & Yuandong Huang & Lei Li & Tao Li & Chong Xu, 2023. "Detailed Inventory and Spatial Distribution Analysis of Rainfall-Induced Landslides in Jiexi County, Guangdong Province, China in August 2018," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    4. Yulong Cui & Pengpeng Bao & Chong Xu & Gui Fu & Qisong Jiao & Yi Luo & Lingling Shen & Xiwei Xu & Fenglin Liu & Yuejun Lyu & Xiuhong Hu & Tao Li & Yongsheng Li & Yimin Liu & Yunfeng Tian, 2020. "A big landslide on the Jinsha River, Tibet, China: geometric characteristics, causes, and future stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2051-2070, December.
    5. Xuan-hao Wang & Wei Cui & Gui-ke Zhang & Hong Yang, 2023. "Identification of rocky ledge on steep, high slopes based on UAV photogrammetry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3201-3224, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanrong Xu & C. F. Leung & Jian Yu & Wenwu Chen, 2018. "Numerical modelling of hydro-mechanical behaviour of ground settlement due to rising water table in loess," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 241-260, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04207-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.