IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i3d10.1007_s11069-020-04104-7.html
   My bibliography  Save this article

Developing nationwide avalanche terrain maps for Norway

Author

Listed:
  • Håvard T. Larsen

    (Norwegian Water Resources and Energy Directorate
    Montana State University)

  • Jordy Hendrikx

    (Montana State University)

  • Martine S. Slåtten

    (Norwegian Water Resources and Energy Directorate)

  • Rune V. Engeset

    (Norwegian Water Resources and Energy Directorate)

Abstract

Snow avalanches are a significant natural hazard in Norway. One method to manage the backcountry avalanche hazard is through detailed mapping of avalanche terrain. Avalanche terrain can be mapped using a variety of methods, including using the Avalanche Terrain Exposure Scale (ATES); however, manual classification of terrain using ATES is time consuming. This study has developed and compared a fully automated algorithm to provide ATES mapping for all of Norway. Our new algorithm is based on the technical model for ATES mapping. This model has specific terrain-based thresholds that can be applied for automated terrain-based modeling. Our algorithm expands on prior work by including the potential release area (PRA) model to identify and calculate the likelihood of an avalanche releasing from a start zone. We also use the raster-based TauDEM-model to determine the avalanche runout length. The final product is a 10-m resolution ATES map. We compared this nationwide ATES map with areas that have been manually mapped by avalanche experts, and find that the automated approach yields similar and reliable results. In addition to comparing mapped areas, we also examine manually mapped linear routes and compare these with the automated mapped ATES areas. Our results suggest that for open terrain, the vast majority of the manually classified tracks are predominantly in the same ATES class as our algorithm. For forested areas, we get mixed results, which can be attributed to a lack of suitable vegetation data at an appropriate scale. Despite this limitation, the current ATES algorithm and resulting spatial data are already valuable as a large portion (~ 70%) of the Norwegian backcountry terrain is above tree line. The automated algorithm is also useful to ensure consistent manual classification across different regions in Norway, or globally, and will permit greater reproducibility and easier updating of mapping for the future.

Suggested Citation

  • Håvard T. Larsen & Jordy Hendrikx & Martine S. Slåtten & Rune V. Engeset, 2020. "Developing nationwide avalanche terrain maps for Norway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2829-2847, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04104-7
    DOI: 10.1007/s11069-020-04104-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04104-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04104-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Barbolini & M. Pagliardi & F. Ferro & P. Corradeghini, 2011. "Avalanche hazard mapping over large undocumented areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(2), pages 451-464, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polina Lemenkova, 2015. "Environmental Hazard Prevention: Monitoring and Control of Landslide Risks in Mountainous Forests," ULB Institutional Repository 2013/364395, ULB -- Universite Libre de Bruxelles.
    2. A. Pistocchi & C. Notarnicola, 2013. "Data-driven mapping of avalanche release areas: a case study in South Tyrol, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1313-1330, February.
    3. Vladislava Košová & Mário Molokáč & Vladimír Čech & Miloš Jesenský, 2022. "Avalanche Hazard Modelling within the Kráľova Hoľa Area in the Low Tatra Mountains in Slovakia," Land, MDPI, vol. 11(6), pages 1-24, May.
    4. Massimiliano Fazzini & Marco Cordeschi & Cristiano Carabella & Giorgio Paglia & Gianluca Esposito & Enrico Miccadei, 2021. "Snow Avalanche Assessment in Mass Movement-Prone Areas: Results from Climate Extremization in Relationship with Environmental Risk Reduction in the Prati di Tivo Area (Gran Sasso Massif, Central Italy," Land, MDPI, vol. 10(11), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04104-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.