IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i3d10.1007_s11069-020-03956-3.html
   My bibliography  Save this article

Retraction Note to: Potential of support vector regression for solar radiation prediction in Nigeria

Author

Listed:
  • Lanre Olatomiwa

    (University of Malaya
    Federal University of Technology)

  • Saad Mekhilef

    (University of Malaya)

  • Shahaboddin Shamshirband

    (University of Malaya)

  • Dalibor Petkovic

    (University of Niš)

Abstract

The Editor-in-Chief has retracted this article [1] because the validity of the content of this article cannot be verified.

Suggested Citation

  • Lanre Olatomiwa & Saad Mekhilef & Shahaboddin Shamshirband & Dalibor Petkovic, 2020. "Retraction Note to: Potential of support vector regression for solar radiation prediction in Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3865-3866, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-03956-3
    DOI: 10.1007/s11069-020-03956-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03956-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03956-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olatomiwa, Lanre & Mekhilef, Saad & Shamshirband, Shahaboddin & Petković, Dalibor, 2015. "Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1784-1791.
    2. Lanre Olatomiwa & Saad Mekhilef & Shahaboddin Shamshirband & Dalibor Petkovic, 2015. "RETRACTED ARTICLE: Potential of support vector regression for solar radiation prediction in Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1055-1068, June.
    3. Lanre Olatomiwa & Saad Mekhilef & Shahaboddin Shamshirband & Dalibor Petkovic, 2015. "Potential of support vector regression for solar radiation prediction in Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1055-1068, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    2. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    3. Al-Shammari, Eiman Tamah & Keivani, Afram & Shamshirband, Shahaboddin & Mostafaeipour, Ali & Yee, Por Lip & Petković, Dalibor & Ch, Sudheer, 2016. "Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm," Energy, Elsevier, vol. 95(C), pages 266-273.
    4. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    5. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    6. Zou, Ling & Wang, Lunche & Xia, Li & Lin, Aiwen & Hu, Bo & Zhu, Hongji, 2017. "Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems," Renewable Energy, Elsevier, vol. 106(C), pages 343-353.
    7. Ben Ammar, Rim & Ben Ammar, Mohsen & Oualha, Abdelmajid, 2020. "Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems," Renewable Energy, Elsevier, vol. 153(C), pages 1016-1028.
    8. Mohammad Mehdi Lotfinejad & Reza Hafezi & Majid Khanali & Seyed Sina Hosseini & Mehdi Mehrpooya & Shahaboddin Shamshirband, 2018. "A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study," Energies, MDPI, vol. 11(5), pages 1-15, May.
    9. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    10. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    11. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    12. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Kıyan, Emel, 2022. "Wind power conversion system model identification using adaptive neuro-fuzzy inference systems: A case study," Energy, Elsevier, vol. 239(PB).
    13. Hussain, Sajid & Al-Alili, Ali, 2016. "A new approach for model validation in solar radiation using wavelet, phase and frequency coherence analysis," Applied Energy, Elsevier, vol. 164(C), pages 639-649.
    14. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    15. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    16. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    17. Gairaa, Kacem & Khellaf, Abdallah & Messlem, Youcef & Chellali, Farouk, 2016. "Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 238-249.
    18. Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.
    19. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    20. Akarslan, Emre & Hocaoglu, Fatih Onur, 2017. "A novel method based on similarity for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 112(C), pages 337-346.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-03956-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.