IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i1d10.1007_s11069-019-03812-z.html
   My bibliography  Save this article

Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel River flood, Gujarat, India

Author

Listed:
  • Nimrabanu Memon

    (Pandit Deendayal Petroleum University (PDPU))

  • Dhruvesh P. Patel

    (Pandit Deendayal Petroleum University (PDPU))

  • Naimish Bhatt

    (Pandit Deendayal Petroleum University (PDPU))

  • Samir B. Patel

    (Pandit Deendayal Petroleum University (PDPU))

Abstract

Flash flood is disastrous; it losses property and life. Its effect is intensified while it occurs in semiarid region because of less preparedness. The present case conferred about a flash flood in semiarid region in Gujarat which was affected by flood in 2015 and 2017. Massive loss of lives and properties has been observed after the event. Now, recuperating the region against flood losses, it was a prime requirement to distribute the flood relief packages to the flood-susceptible areas. To identify the flood hazards and flood risk and assess the flood vulnerability in Rel River catchment, the region is divided into 52 micro-watersheds using RS and GIS techniques. The morphology of the Rel River catchments has been explored using the morphometric analysis. The priority rank and category for each micro-watershed were assigned based on compound factor values, whereas compound factor was calculated using weighted sum analysis techniques. Flood hazard zone map was prepared, and flood vulnerability has been characterized from very low to very high. Furthermore, the multi-criteria analysis was used to calculate the risk factor for the basin and AHP-MCE method was used to find the normalized weights of each factor (LU/LC, CF, soil, slope, drainage density) that were significant to the flood disaster. The integration of flood hazard map along with these parameters helped to understand the sensitivity of flash floods at different locations within the study area. Flood risk map was further analyzed at village level, and it has been identified that 17 out of 39 villages were at high risk, 12 villages were at moderate risk and 10 villages were at low risk. The study helped to clearly identify villages vulnerable to flood risk where more relief and flood insurance packages need to be allotted. Thus, the present method and integrated approach would be a useful tool for the decision maker to distribute the flood relief package in flash flood-prone area.

Suggested Citation

  • Nimrabanu Memon & Dhruvesh P. Patel & Naimish Bhatt & Samir B. Patel, 2020. "Integrated framework for flood relief package (FRP) allocation in semiarid region: a case of Rel River flood, Gujarat, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 279-311, January.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:1:d:10.1007_s11069-019-03812-z
    DOI: 10.1007/s11069-019-03812-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03812-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03812-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Chowdary & D. Ramakrishnan & Y. Srivastava & Vinu Chandran & A. Jeyaram, 2009. "Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1581-1602, June.
    2. Volker Meyer & Sebastian Scheuer & Dagmar Haase, 2009. "A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 17-39, January.
    3. Mohamed Abdelkareem, 2017. "Targeting flash flood potential areas using remotely sensed data and GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 19-37, January.
    4. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    5. Francesca Franci & Gabriele Bitelli & Emanuele Mandanici & Diofantos Hadjimitsis & Athos Agapiou, 2016. "Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 31-51, October.
    6. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    7. Swati Maurya & Prashant K. Srivastava & Manika Gupta & Tanvir Islam & Dawei Han, 2016. "Integrating Soil Hydraulic Parameter and Microwave Precipitation with Morphometric Analysis for Watershed Prioritization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5385-5405, November.
    8. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2011. "Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1261-1276, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Preeti Ramkar & Sanjaykumar M. Yadav, 2021. "Flood risk index in data-scarce river basins using the AHP and GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1119-1140, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    2. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    3. Mohamed Abdelkareem & Abbas M. Mansour, 2023. "Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2269-2295, July.
    4. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    5. A.-P. Theochari & M. Develekou & E. Baltas, 2022. "GIS-Based Multi-criteria Approach Towards Sustainability of Flood-Susceptible Areas in Giofiros River Basin, Greece," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1615-1626, December.
    6. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    7. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    8. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    9. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    10. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    11. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    12. Yangfan Xiao & Shanzhen Yi & Zhongqian Tang, 2018. "A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3317-3335, August.
    13. Lin Lin & Zening Wu & Qiuhua Liang, 2019. "Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 455-475, June.
    14. Bandi Aneesha Satya & Meshapam Shashi & Deva Pratap, 2019. "A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India," Environmental & Socio-economic Studies, Sciendo, vol. 7(3), pages 1-13, September.
    15. Yenan Wu & Ping-an Zhong & Yu Zhang & Bin Xu & Biao Ma & Kun Yan, 2015. "Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 635-651, August.
    16. Peng Gao & Wei Gao & Nan Ke, 2021. "Assessing the impact of flood inundation dynamics on an urban environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1047-1072, October.
    17. Haibo Hu & Xudong Liang & Fengchun You & Jisong Sun, 2015. "An analysis of meteorological services under extreme weather conditions based on a Bayesian decision-support model: a case study of the thunderstorms in Beijing on July 21, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1225-1241, September.
    18. Rofiat Bunmi Mudashiru & Nuridah Sabtu & Rozi Abdullah & Azlan Saleh & Ismail Abustan, 2022. "A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1903-1939, July.
    19. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    20. Nayan D. Zagade & Bhavana N. Umrikar, 2021. "Drought severity modeling of upper Bhima river basin, western India, using GIS–AHP tools for effective mitigation and resource management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1165-1188, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:1:d:10.1007_s11069-019-03812-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.