IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v37y2024i2d10.1007_s13563-023-00413-y.html
   My bibliography  Save this article

The dynamics and long-term availability of the total resources from the geosphere and technosphere—re-examined

Author

Listed:
  • Friedrich-W. Wellmer

    (acatech - National Academy of Science and Engineering)

  • Marius Kern

    (German Mineral Resources Agency (DERA) at the Federal Institute of Geosciences and Natural Resources (BGR))

Abstract

After consideration of some basic principles of raw material consumption we conclude that — with the exception of the nutrients nitrogen, phosphate and potassium — humankind does not need raw materials as such, but only the intrinsic function they can provide. For fulfilling these functions we have at our disposal three resources: the geosphere, the technosphere, and the most important resource of all, human creativity. Human ingenuity and curiosity by its very nature strives to find an answer to the fundamental question of supply and demand, that is, whether adequate availability can be secured in the light of expected consumption growth. Commonly, intensity of use factors (IOU) — unit raw material related to unit gross national product (GDP) — are used for this purpose. This approach has been criticized because of other influences on raw material consumption. In this article, world-wide statistics are used to deal with the objections and to see if growth rates have already peaked and whether the ratio of primary to secondary production follows a positive trend. The commodities investigated are aluminum/bauxite, copper, zinc, nickel, steel, and platinum. As far as growth rates are concerned we are beyond the point of inflexion in aluminum, copper, zinc, and nickel. For steel, the answer is uncertain. In terms of relative share of secondary use of raw materials, all commodities show a positive trend towards a better circular, self-sustaining economy, with aluminum and zinc more pronounced in this regard than others, like copper or steel. Finally, it can be definitely affirmed that we are not running out of resource possibilities, not even for copper.

Suggested Citation

  • Friedrich-W. Wellmer & Marius Kern, 2024. "The dynamics and long-term availability of the total resources from the geosphere and technosphere—re-examined," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(2), pages 227-244, June.
  • Handle: RePEc:spr:minecn:v:37:y:2024:i:2:d:10.1007_s13563-023-00413-y
    DOI: 10.1007/s13563-023-00413-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-023-00413-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-023-00413-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Buchholz & Friedrich-W. Wellmer & Dennis Bastian & Maren Liedtke, 2020. "Leaning against the wind: low-price benchmarks for acting anticyclically in the metal markets," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 81-100, July.
    2. Phillip Crowson, 2018. "Intensity of use reexamined," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(1), pages 61-70, May.
    3. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    4. Christian Hagelüken & Daniel Goldmann, 2022. "Recycling and circular economy—towards a closed loop for metals in emerging clean technologies," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 539-562, December.
    5. Volker Steinbach & Friedrich-W. Wellmer, 2010. "Consumption and Use of Non-Renewable Mineral and Energy Raw Materials from an Economic Geology Point of View," Sustainability, MDPI, vol. 2(5), pages 1-23, May.
    6. Friedrich -W. Wellmer & Roland W. Scholz, 2017. "Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 73-93, July.
    7. Lawrence D. Meinert & Gilpin R. Robinson & Nedal T. Nassar, 2016. "Mineral Resources: Reserves, Peak Production and the Future," Resources, MDPI, vol. 5(1), pages 1-14, February.
    8. Sven Renner & Friedrich W. Wellmer, 2020. "Volatility drivers on the metal market and exposure of producing countries," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(3), pages 311-340, October.
    9. Cutler J. Cleveland & Matthias Ruth, 1998. "Indicators of Dematerialization and the Materials Intensity of Use," Journal of Industrial Ecology, Yale University, vol. 2(3), pages 15-50, July.
    10. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich-W. Wellmer, 2022. "What we have learned from the past and how we should look forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 765-795, December.
    2. Steve Mohr & Damien Giurco & Monique Retamal & Leah Mason & Gavin Mudd, 2018. "Global Projection of Lead-Zinc Supply from Known Resources," Resources, MDPI, vol. 7(1), pages 1-15, February.
    3. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    4. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    5. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    6. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    8. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    9. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    10. Dino, Giovanna Antonella & Cavallo, Alessandro & Faraudello, Alessandra & Piercarlo, Rossi & Mancini, Susanna, 2021. "Raw materials supply: Kaolin and quartz from ore deposits and recycling activities. The example of the Monte Bracco area (Piedmont, Northern Italy)," Resources Policy, Elsevier, vol. 74(C).
    11. János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    12. Zhong, Qiumeng & Zhang, Zhihe & Wang, Heming & Zhang, Xu & Wang, Yao & Wang, Peng & Ma, Fengmei & Yue, Qiang & Du, Tao & Chen, Wei-Qiang & Liang, Sai, 2023. "Incorporating scarcity into footprints reveals diverse supply chain hotspots for global fossil fuel management," Applied Energy, Elsevier, vol. 349(C).
    13. Alessandro Cavallo & Giovanna Antonella Dino, 2022. "Extractive Waste as a Resource: Quartz, Feldspars, and Rare Earth Elements from Gneiss Quarries of the Verbano-Cusio-Ossola Province (Piedmont, Northern Italy)," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    14. Dou Shiquan & Xu Deyi, 2023. "The security of critical mineral supply chains," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 401-412, September.
    15. Zhang, Jintao & Su, Taoyong & Meng, Li, 2024. "Corporate earnings management strategy under environmental regulation: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 154-166.
    16. Margarita N. Ignatyeva & Vera V. Yurak & Alexey V. Dushin & Irina G. Polyanskaya, 2021. "Assessing challenges and threats for balanced subsoil use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17904-17922, December.
    17. Elisabeth Christen & Klaus S. Friesenbichler & Alexander Hudetz & Claudia Kettner-Marx & Ina Meyer & Franz Sinabell, 2021. "Außenhandel und nachhaltige Entwicklung in Österreich. Befunde auf der Grundlage von vorliegenden Quellen," WIFO Studies, WIFO, number 69290.
    18. Steven B. Young & Shannon Fernandes & Michael O. Wood, 2019. "Jumping the Chain: How Downstream Manufacturers Engage with Deep Suppliers of Conflict Minerals," Resources, MDPI, vol. 8(1), pages 1-24, January.
    19. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Matheus L. C. M. Henckens, 2022. "The Energy Transition and Energy Equity: A Compatible Combination?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:37:y:2024:i:2:d:10.1007_s13563-023-00413-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.