IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v36y2023i3d10.1007_s13563-022-00354-y.html
   My bibliography  Save this article

Comparison of exponential smoothing methods in forecasting global prices of main metals

Author

Listed:
  • Esma Kahraman

    (Cukurova University)

  • Ozlem Akay

    (Gaziantep Islam Science and Technology University)

Abstract

Metals are indispensable raw materials for industry and have strategic importance in economic development. The price forecasting of metals is crucial for the production sector and production policies of countries. The paper presents the application of various exponential smoothing methods to metal spot price forecasting. Aluminum, copper, lead, iron, nickel, tin, and zinc prices were analyzed by using yearly data from 1990 to 2021. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) values of the models were obtained and their performances were compared to determine the appropriate model for each metal price. These metal prices were forecasted up to 2030 by using the best-fitted models.

Suggested Citation

  • Esma Kahraman & Ozlem Akay, 2023. "Comparison of exponential smoothing methods in forecasting global prices of main metals," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 427-435, September.
  • Handle: RePEc:spr:minecn:v:36:y:2023:i:3:d:10.1007_s13563-022-00354-y
    DOI: 10.1007/s13563-022-00354-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-022-00354-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-022-00354-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    2. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    3. E S Gardner & E McKenzie, 2011. "Why the damped trend works," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1177-1180, June.
    4. Everette S. Gardner, 1999. "Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing," Management Science, INFORMS, vol. 45(8), pages 1169-1176, August.
    5. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    6. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    2. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    3. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    4. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2022. "Gold price forecasting using multivariate stochastic model," Resources Policy, Elsevier, vol. 76(C).
    5. Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
    6. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    7. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    8. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    9. He, Kaijian & Lu, Xingjing & Zou, Yingchao & Keung Lai, Kin, 2015. "Forecasting metal prices with a curvelet based multiscale methodology," Resources Policy, Elsevier, vol. 45(C), pages 144-150.
    10. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    11. Li, Qinyun & Disney, Stephen M. & Gaalman, Gerard, 2014. "Avoiding the bullwhip effect using Damped Trend forecasting and the Order-Up-To replenishment policy," International Journal of Production Economics, Elsevier, vol. 149(C), pages 3-16.
    12. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    13. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    14. Tapia Cortez, Carlos A. & Hitch, Michael & Sammut, Claude & Coulton, Jeff & Shishko, Robert & Saydam, Serkan, 2018. "Determining the embedding parameters governing long-term dynamics of copper prices," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 186-197.
    15. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    16. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    17. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    18. Sheng‐Tun Li & Kuei‐Chen Chiu & Chien‐Chang Wu, 2023. "Apply big data analytics for forecasting the prices of precious metals futures to construct a hedging strategy for industrial material procurement," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 942-959, March.
    19. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    20. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:36:y:2023:i:3:d:10.1007_s13563-022-00354-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.