IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i2d10.1007_s00184-020-00779-x.html
   My bibliography  Save this article

On the ARCH model with stationary liquidity

Author

Listed:
  • Marko Voutilainen

    (Aalto University School of Science)

  • Pauliina Ilmonen

    (Aalto University School of Science)

  • Soledad Torres

    (CIMFAV - Facultad de Ingeniería, Universidad de Valparaíso)

  • Ciprian Tudor

    (UFR Mathématiques, Université de Lille 1)

  • Lauri Viitasaari

    (University of Helsinki
    Aalto University School of Business)

Abstract

The classical ARCH model together with its extensions have been widely applied in the modeling of financial time series. We study a variant of the ARCH model that takes account of liquidity given by a positive stationary process. We provide minimal assumptions that ensure the existence and uniqueness of the stationary solution for this model. Moreover, we give necessary and sufficient conditions for the existence of the autocovariance function. After that, we derive an AR(1) characterization for the stationary solution yielding Yule–Walker type quadratic equations for the model parameters. In order to define a proper estimation method for the model, we first show that the autocovariance estimators of the stationary solution are consistent under relatively mild assumptions. Consequently, we prove that the natural estimators arising out of the quadratic equations inherit consistency from the autocovariance estimators. Finally, we illustrate our results with several examples and a simulation study.

Suggested Citation

  • Marko Voutilainen & Pauliina Ilmonen & Soledad Torres & Ciprian Tudor & Lauri Viitasaari, 2021. "On the ARCH model with stationary liquidity," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 195-224, February.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:2:d:10.1007_s00184-020-00779-x
    DOI: 10.1007/s00184-020-00779-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00779-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00779-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Bahamonde, Natalia & Torres, Soledad & Tudor, Ciprian A., 2018. "ARCH model and fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 70-78.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," LIDAM Discussion Papers CORE 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Chris Motengwe & Angel Pardo, 2015. "A Study of Seasonality on the Safex Wheat Market," Agrekon, Taylor & Francis Journals, vol. 54(4), pages 45-72, November.
    3. Rubin, Ofir D. & Ihle, Rico & Kachel, Yael & Goodwin, Barry K., 2013. "The impact of violent political conflict on commodity prices: The Israeli food market," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150961, Agricultural and Applied Economics Association.
    4. Aleksejus Kononovicius & Julius Ruseckas, 2014. "Nonlinear GARCH model and 1/f noise," Papers 1412.6244, arXiv.org, revised Feb 2015.
    5. Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.
    6. Javier Sánchez García & Salvador Cruz Rambaud, 2022. "A GARCH approach to model short‐term interest rates: Evidence from Spanish economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1621-1632, April.
    7. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    8. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    9. Abdelouahab Bibi, 2021. "Asymptotic properties of QMLE for seasonal threshold GARCH model with periodic coefficients," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 477-514, June.
    10. Thilo A. Schmitt & Rudi Schafer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering temporal dependencies in financial time series," Papers 1507.04990, arXiv.org.
    11. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    12. Borusyak, K., 2011. "Nonlinear Dynamics of the Russian Stock Market in Problems of Risk Management," Journal of the New Economic Association, New Economic Association, issue 11, pages 85-105.
    13. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    14. Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
    15. Bouoiyour, Jamal & Miftah, Amal & Selmi, Refk, 2014. "Do Financial Flows raise or reduce Economic growth Volatility? Some Lessons from Moroccan case," MPRA Paper 57258, University Library of Munich, Germany.
    16. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    17. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    18. Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
    19. Bibi, Abdelouahab & Ghezal, Ahmed, 2017. "Asymptotic properties of QMLE for periodic asymmetric strong and semi-strong GARCH models," MPRA Paper 81126, University Library of Munich, Germany.
    20. Kononovicius, A. & Ruseckas, J., 2015. "Nonlinear GARCH model and 1/f noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 74-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:2:d:10.1007_s00184-020-00779-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.