IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v83y2020i4d10.1007_s00184-019-00738-1.html
   My bibliography  Save this article

Poisson source localization on the plane: the smooth case

Author

Listed:
  • O. V. Chernoyarov

    (National Research University “MPEI”
    Maikop State Technological University
    Tomsk State University)

  • Yu. A. Kutoyants

    (Le Mans University
    Tomsk State University)

Abstract

We consider the problem of localization of a Poisson source using observations of inhomogeneous Poisson processes. We assume that k detectors are distributed on the plane and each detector generates observations of the Poisson processes, whose intensity functions depend on the position of the source. We study asymptotic properties of the maximum likelihood and Bayesian estimators of the source position on the plane assuming that the amplitude of the intensity functions are large. We show that under regularity conditions these estimators are consistent, asymptotically normal and asymptotically efficient in the minimax mean-square sense. Then we propose some simple consistent estimators and these estimators are further used to construct asymptotically efficient One-step MLE-process.

Suggested Citation

  • O. V. Chernoyarov & Yu. A. Kutoyants, 2020. "Poisson source localization on the plane: the smooth case," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 411-435, May.
  • Handle: RePEc:spr:metrik:v:83:y:2020:i:4:d:10.1007_s00184-019-00738-1
    DOI: 10.1007/s00184-019-00738-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-019-00738-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-019-00738-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kutoyants, Yu.A., 2017. "On the multi-step MLE-process for ergodic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2243-2261.
    2. S. Dachian, 2003. "Estimation of Cusp Location by Poisson Observations," Statistical Inference for Stochastic Processes, Springer, vol. 6(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arij Amiri & Sergueï Dachian, 2021. "On smooth change-point location estimation for Poisson Processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 499-524, October.
    2. Yury A. Kutoyants, 2021. "On localization of source by hidden Gaussian processes with small noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 671-702, August.
    3. O. V. Chernoyarov & S. Dachian & C. Farinetto & Yu. A. Kutoyants, 2022. "Estimation of the position and time of emission of a source," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 61-82, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Dachian & N. Kordzakhia & Yu. A. Kutoyants & A. Novikov, 2018. "Estimation of cusp location of stochastic processes: a survey," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 345-362, July.
    2. Fujii Takayuki, 2009. "Cusp estimation in random design regression models," Statistics & Risk Modeling, De Gruyter, vol. 27(3), pages 235-248, December.
    3. Kutoyants, Yury A., 2019. "On parameter estimation of the hidden Ornstein–Uhlenbeck process," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 248-263.
    4. Alexander Gushchin & Uwe Küchler, 2011. "On estimation of delay location," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 273-305, October.
    5. Kordzakhia, Nino E. & Kutoyants, Yury A. & Novikov, Alexander A. & Hin, Lin-Yee, 2018. "On limit distributions of estimators in irregular statistical models and a new representation of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 141-151.
    6. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
    7. Yury A. Kutoyants, 2017. "The asymptotics of misspecified MLEs for some stochastic processes: a survey," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 347-367, October.
    8. C. Farinetto & Yu. A. Kutoyants & A. Top, 2020. "Poisson source localization on the plane: change-point case," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 675-698, June.
    9. Arij Amiri & Sergueï Dachian, 2021. "On smooth change-point location estimation for Poisson Processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 499-524, October.
    10. O. V. Chernoyarov & S. Dachian & Yu. A. Kutoyants, 2018. "On parameter estimation for cusp-type signals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 39-62, February.
    11. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    12. O. V. Chernoyarov & S. Dachian & Yu. A. Kutoyants, 2020. "Poisson source localization on the plane: cusp case," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1137-1157, October.
    13. Sergueï Dachian & Lin Yang, 2015. "On a Poissonian change-point model with variable jump size," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 127-150, July.
    14. Yusuke Kaino & Shogo H. Nakakita & Masayuki Uchida, 2020. "Hybrid estimation for ergodic diffusion processes based on noisy discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 171-198, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:83:y:2020:i:4:d:10.1007_s00184-019-00738-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.