IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v83y2020i2d10.1007_s00184-019-00736-3.html
   My bibliography  Save this article

Nonparametric quantile estimation using surrogate models and importance sampling

Author

Listed:
  • Michael Kohler

    (Technische Universität Darmstadt)

  • Reinhard Tent

    (Technische Universität Darmstadt)

Abstract

Given a costly to compute function $$m: {\mathbb {R}}^d\rightarrow {\mathbb {R}}$$m:Rd→R, which is part of a simulation model, and an $${\mathbb {R}}^d$$Rd-valued random variable with known distribution, the problem of estimating a quantile $$q_{m(X),\alpha }$$qm(X),α is investigated. The presented approach has a nonparametric nature. Monte Carlo quantile estimates are obtained by estimating m through some estimate (surrogate) $$m_n$$mn and then by using an initial quantile estimate together with importance sampling to construct an importance sampling surrogate quantile estimate. A general error bound on the error of this quantile estimate is derived, which depends on the local error of the function estimate $$m_n$$mn, and the convergence rates of the corresponding importance sampling surrogate quantile estimates are analyzed. The finite sample size behavior of the estimates is investigated by applying the estimates to simulated data.

Suggested Citation

  • Michael Kohler & Reinhard Tent, 2020. "Nonparametric quantile estimation using surrogate models and importance sampling," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(2), pages 141-169, February.
  • Handle: RePEc:spr:metrik:v:83:y:2020:i:2:d:10.1007_s00184-019-00736-3
    DOI: 10.1007/s00184-019-00736-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-019-00736-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-019-00736-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neddermeyer, Jan C., 2009. "Computationally Efficient Nonparametric Importance Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 788-802.
    2. Michael Kohler & Adam Krzyżak & Reinhard Tent & Harro Walk, 2018. "Nonparametric quantile estimation using importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 439-465, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. Michael Kohler & Adam Krzyżak & Reinhard Tent & Harro Walk, 2018. "Nonparametric quantile estimation using importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 439-465, April.
    3. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    6. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    7. Panos Parpas & Berk Ustun & Mort Webster & Quang Kha Tran, 2015. "Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 358-377, May.
    8. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:83:y:2020:i:2:d:10.1007_s00184-019-00736-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.