IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v82y2019i3d10.1007_s00184-018-0683-y.html
   My bibliography  Save this article

Estimation of a continuous distribution on the real line by discretization methods

Author

Listed:
  • Yo Sheena

    (Shinshu University
    Shiga University)

Abstract

For an unknown continuous distribution on the real line, we consider the approximate estimation by discretization. There are two methods for discretization. The first method is to divide the real line into several intervals before taking samples (“fixed interval method”). The second method is to divide the real line using the estimated percentiles after taking samples (“moving interval method”). In either method, we arrive at the estimation problem of a multinomial distribution. We use (symmetrized) f-divergence to measure the discrepancy between the true distribution and the estimated distribution. Our main result is the asymptotic expansion of the risk (i.e., expected divergence) up to the second-order term in the sample size. We prove theoretically that the moving interval method is asymptotically superior to the fixed interval method. We also observe how the presupposed intervals (fixed interval method) or percentiles (moving interval method) affect the asymptotic risk.

Suggested Citation

  • Yo Sheena, 2019. "Estimation of a continuous distribution on the real line by discretization methods," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 339-360, April.
  • Handle: RePEc:spr:metrik:v:82:y:2019:i:3:d:10.1007_s00184-018-0683-y
    DOI: 10.1007/s00184-018-0683-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0683-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0683-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbiero, Alessandro, 2012. "A general discretization procedure for reliability computation in complex stress–strength models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1667-1676.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lujano-Rojas, J.M. & Osório, G.J. & Matias, J.C.O. & Catalão, J.P.S., 2016. "A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability," Renewable Energy, Elsevier, vol. 87(P1), pages 731-743.
    2. Alessandro Barbiero & Asmerilda Hitaj, 2022. "Approximation of continuous random variables for the evaluation of the reliability parameter of complex stress–strength models," Annals of Operations Research, Springer, vol. 315(2), pages 1573-1598, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:82:y:2019:i:3:d:10.1007_s00184-018-0683-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.