IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i7d10.1007_s00184-018-0662-3.html
   My bibliography  Save this article

Extreme value statistics for censored data with heavy tails under competing risks

Author

Listed:
  • Julien Worms

    (Université Paris-Saclay / Université de Versailles-Saint-Quentin-En-Yvelines, Laboratoire de Mathématiques de Versailles (CNRS UMR 8100))

  • Rym Worms

    (Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050))

Abstract

This paper addresses the problem of estimating, from randomly censored data subject to competing risks, the extreme value index of the (sub)-distribution function associated to one particular cause, in a heavy-tail framework. Asymptotic normality of the proposed estimator is established. This estimator has the form of an Aalen-Johansen integral and is the first estimator proposed in this context. Estimation of extreme quantiles of the cumulative incidence function is then addressed as a consequence. A small simulation study exhibits the performances for finite samples.

Suggested Citation

  • Julien Worms & Rym Worms, 2018. "Extreme value statistics for censored data with heavy tails under competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 849-889, October.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:7:d:10.1007_s00184-018-0662-3
    DOI: 10.1007/s00184-018-0662-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0662-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0662-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Worms, J. & Worms, R., 2016. "A Lynden-Bell integral estimator for extremes of randomly truncated data," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 106-117.
    2. Fermanian, Jean-David, 2003. "Nonparametric estimation of competing risks models with covariates," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 156-191, April.
    3. Jan Beyersmann & Martin Schumacher, 2008. "A note on nonparametric quantile inference for competing risks and more complex multistate models," Biometrika, Biometrika Trust, vol. 95(4), pages 1006-1008.
    4. L. Peng & J. P. Fine, 2007. "Nonparametric quantile inference with competing–risks data," Biometrika, Biometrika Trust, vol. 94(3), pages 735-744.
    5. Ségolen Geffray, 2009. "Strong approximations for dependent competing risks with independent censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 76-95, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maeregu W. Arisido & Fulvia Mecatti & Paola Rebora, 2022. "Improving the causal treatment effect estimation with propensity scores by the bootstrap," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 455-471, September.
    2. Liu, Bin & Shi, Yimin & Ng, Hon Keung Tony & Shang, Xiangwen, 2021. "Nonparametric Bayesian reliability analysis of masked data with dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. R. Haile & J.-H. Jeong & X. Chen & Y. Cheng, 2016. "A 3-parameter Gompertz distribution for survival data with competing risks, with an application to breast cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2239-2253, September.
    2. Bordes, Laurent & Gneyou, Kossi Essona, 2011. "Uniform convergence of nonparametric regressions in competing risk models with right censoring," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1654-1663, November.
    3. Sokbae Lee, 2006. "Identification of a competing risks model with unknown transformations of latent failure times," Biometrika, Biometrika Trust, vol. 93(4), pages 996-1002, December.
    4. P. Sankaran & N. Midhu, 2016. "Testing exponentiality using mean residual quantile function," Statistical Papers, Springer, vol. 57(1), pages 235-247, March.
    5. Peng Liu & Yixin Wang & Yong Zhou, 2015. "Quantile residual lifetime with right-censored and length-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 999-1028, October.
    6. Soni, Pooja & Dewan, Isha & Jain, Kanchan, 2012. "Nonparametric estimation of quantile density function," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3876-3886.
    7. Lee, Minjung & Han, Junhee, 2016. "Covariate-adjusted quantile inference with competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 57-63.
    8. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
    9. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    10. Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
    11. Sankaran, P.G. & Unnikrishnan Nair, N. & Sreedevi, E.P., 2010. "A quantile based test for comparing cumulative incidence functions of competing risks models," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 886-891, May.
    12. Arthur Allignol & Martin Schumacher & Jan Beyersmann, 2011. "Estimating summary functionals in multistate models with an application to hospital infection data," Computational Statistics, Springer, vol. 26(2), pages 181-197, June.
    13. Zhang, Feipeng & Tan, Zhong, 2015. "A new nonparametric quantile estimate for length-biased data with competing risks," Economics Letters, Elsevier, vol. 137(C), pages 10-12.
    14. Saida Mancer & Abdelhakim Necir & Souad Benchaira, 2023. "Bias Reduction in Kernel Tail Index Estimation for Randomly Truncated Pareto-Type Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1510-1547, August.
    15. Benchaira, Souad & Meraghni, Djamel & Necir, Abdelhakim, 2016. "Kernel estimation of the tail index of a right-truncated Pareto-type distribution," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 186-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:7:d:10.1007_s00184-018-0662-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.