Nonparametric quantile inference with competing–risks data
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
- Soni, Pooja & Dewan, Isha & Jain, Kanchan, 2012. "Nonparametric estimation of quantile density function," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3876-3886.
- Zhang, Feipeng & Tan, Zhong, 2015. "A new nonparametric quantile estimate for length-biased data with competing risks," Economics Letters, Elsevier, vol. 137(C), pages 10-12.
- P. Sankaran & N. Midhu, 2016. "Testing exponentiality using mean residual quantile function," Statistical Papers, Springer, vol. 57(1), pages 235-247, March.
- Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
- Peng Liu & Yixin Wang & Yong Zhou, 2015. "Quantile residual lifetime with right-censored and length-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 999-1028, October.
- Lee, Minjung & Han, Junhee, 2016. "Covariate-adjusted quantile inference with competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 57-63.
- Julien Worms & Rym Worms, 2018. "Extreme value statistics for censored data with heavy tails under competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 849-889, October.
- S. R. Haile & J.-H. Jeong & X. Chen & Y. Cheng, 2016. "A 3-parameter Gompertz distribution for survival data with competing risks, with an application to breast cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2239-2253, September.
- Sankaran, P.G. & Unnikrishnan Nair, N. & Sreedevi, E.P., 2010. "A quantile based test for comparing cumulative incidence functions of competing risks models," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 886-891, May.
- Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:3:p:735-744. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.