IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v4y2002i3d10.1023_a1022596700741.html
   My bibliography  Save this article

Scale Invariance Properties in the Simulated Annealing Algorithm

Author

Listed:
  • M. A. Fleischer

    (University of Maryland)

  • S. H. Jacobson

    (University of Illinois at Urbana-Champaign)

Abstract

The Boltzmann distribution used in the steady-state analysis of the simulated annealing algorithm gives rise to several scale invariant properties. Scale invariance is first presented in the context of parallel independent processors and then extended to an abstract form based on lumping states together to form new aggregate states. These lumped or aggregate states possess all of the mathematical characteristics, forms and relationships of states (solutions) in the original problem in both first and second moments. These scale invariance properties therefore permit new ways of relating objective function values, conditional expectation values, stationary probabilities, rates of change of stationary probabilities and conditional variances. Such properties therefore provide potential applications in analysis, statistical inference and optimization. Directions for future research that take advantage of scale invariance are also discussed.

Suggested Citation

  • M. A. Fleischer & S. H. Jacobson, 2002. "Scale Invariance Properties in the Simulated Annealing Algorithm," Methodology and Computing in Applied Probability, Springer, vol. 4(3), pages 219-241, September.
  • Handle: RePEc:spr:metcap:v:4:y:2002:i:3:d:10.1023_a:1022596700741
    DOI: 10.1023/A:1022596700741
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022596700741
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022596700741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leyuan Shi & Sigurdur Ólafsson, 2000. "Nested Partitions Method for Global Optimization," Operations Research, INFORMS, vol. 48(3), pages 390-407, June.
    2. James P. Hobert, 2002. "On the applicability of regenerative simulation in Markov chain Monte Carlo," Biometrika, Biometrika Trust, vol. 89(4), pages 731-743, December.
    3. Mark Fleischer & Sheldon H. Jacobson, 1999. "Information Theory and the Finite-Time Behavior of the Simulated Annealing Algorithm: Experimental Results," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 35-43, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
    2. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    3. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    4. Armstrong, Derek E. & Jacobson, Sheldon H., 2008. "An analysis of neighborhood functions on generic solution spaces," European Journal of Operational Research, Elsevier, vol. 186(2), pages 529-541, April.
    5. Lingxuan Liu & Leyuan Shi, 2019. "Simulation Optimization on Complex Job Shop Scheduling with Non-Identical Job Sizes," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(05), pages 1-26, October.
    6. Bhattacharya, Sourabh, 2008. "Consistent estimation of the accuracy of importance sampling using regenerative simulation," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2522-2527, October.
    7. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    8. K. Gokbayrak & C.G. Cassandras, 2002. "Generalized Surrogate Problem Methodology for Online Stochastic Discrete Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 97-132, July.
    9. K. Gokbayrak & C. G. Cassandras, 2001. "Online Surrogate Problem Methodology for Stochastic Discrete Resource Allocation Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 349-376, February.
    10. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    11. Xiao-Ming Yang & Xin-Jia Jiang, 2020. "Yard Crane Scheduling in the Ground Trolley-Based Automated Container Terminal," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-28, March.
    12. Emilio De Santis & Mauro Piccioni, 2008. "Exact Simulation for Discrete Time Spin Systems and Unilateral Fields," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 105-120, March.
    13. Leyuan Shi & Sigurdur O´lafsson, 2000. "Nested Partitions Method for Stochastic Optimization," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 271-291, September.
    14. J.E. Orosz & S.H. Jacobson, 2002. "Analysis of Static Simulated Annealing Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 165-182, October.
    15. Szu Hui Ng & Stephen E. Chick, 2004. "Design of follow‐up experiments for improving model discrimination and parameter estimation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(8), pages 1129-1148, December.
    16. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    17. Chen Wang & Vicki M. Bier, 2011. "Target-Hardening Decisions Based on Uncertain Multiattribute Terrorist Utility," Decision Analysis, INFORMS, vol. 8(4), pages 286-302, December.
    18. G. Alon & D. Kroese & T. Raviv & R. Rubinstein, 2005. "Application of the Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based Environment," Annals of Operations Research, Springer, vol. 134(1), pages 137-151, February.
    19. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    20. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:4:y:2002:i:3:d:10.1023_a:1022596700741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.