IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i4d10.1007_s11009-024-10117-7.html
   My bibliography  Save this article

A Queueing-Inventory System with Modified Delayed Vacation under Bernoulli Schedule

Author

Listed:
  • Qingzhe Xu

    (Nanjing University of Science and Technology)

  • Jianjun Li

    (Nanjing University of Science and Technology)

  • Liwei Liu

    (Nanjing University of Science and Technology)

  • Lixue Guo

    (Nanjing Agricultural University)

Abstract

In this paper, we consider a queueing-inventory system with modified delayed vacation under Bernoulli schedule. If the inventory is empty upon completion of the service, the server will take the modified delayed vacation. During the modified delayed vacation period, if the replenishment is completed, the customer will still be served as normal. After this period, the server will take Bernoulli schedule, where the server reverts to normal work with probability $$q(0\le q\le 1)$$ q ( 0 ≤ q ≤ 1 ) or takes multiple vacations with probability $$1-q$$ 1 - q . The customers arrive according to a Poisson process. Upon customer arrival, if the inventory is not empty, the customer accepts the service and leaves the system carrying a product. The service time, lead time, modified delayed vacation time and multiple vacations time are all assumed to be exponentially distributed. We derive the stability condition of the system and the matrix geometric solution of steady-state probabilities using an algorithm. Then performance measures of the system are derived. Finally, numerical results are presented to demonstrate the impact of system parameters on performance measures and the expected cost function.

Suggested Citation

  • Qingzhe Xu & Jianjun Li & Liwei Liu & Lixue Guo, 2024. "A Queueing-Inventory System with Modified Delayed Vacation under Bernoulli Schedule," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-22, December.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10117-7
    DOI: 10.1007/s11009-024-10117-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10117-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10117-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Barron, 2019. "A state-dependent perishability (s, S) inventory model with random batch demands," Annals of Operations Research, Springer, vol. 280(1), pages 65-98, September.
    2. I. Padmavathi & A. Shophia Lawrence & B. Sivakumar, 2016. "A finite-source inventory system with postponed demands and modified M vacation policy," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 41-62, March.
    3. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    2. Agassi Melikov & Laman Poladova & Sandhya Edayapurath & Janos Sztrik, 2023. "Single-Server Queuing-Inventory Systems with Negative Customers and Catastrophes in the Warehouse," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    3. Walid W. Nasr, 2022. "Inventory systems with stochastic and batch demand: computational approaches," Annals of Operations Research, Springer, vol. 309(1), pages 163-187, February.
    4. Yonit Barron, 2023. "Integrating Replenishment Policy and Maintenance Services in a Stochastic Inventory System with Bilateral Movements," Mathematics, MDPI, vol. 11(4), pages 1-35, February.
    5. N. Nithya & N. Anbazhagan & S. Amutha & K. Jeganathan & Gi-Cheon Park & Gyanendra Prasad Joshi & Woong Cho, 2023. "Controlled Arrivals on the Retrial Queueing–Inventory System with an Essential Interruption and Emergency Vacationing Server," Mathematics, MDPI, vol. 11(16), pages 1-24, August.
    6. Agassi Melikov & Ramil Mirzayev & Sajeev S. Nair, 2022. "Double Sources Queuing-Inventory System with Hybrid Replenishment Policy," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    7. Subramanian Selvakumar & Kathirvel Jeganathan & Krishnasamy Srinivasan & Neelamegam Anbazhagan & Soojeong Lee & Gyanendra Prasad Joshi & Ill Chul Doo, 2023. "An Optimization of Home Delivery Services in a Stochastic Modeling with Self and Compulsory Vacation Interruption," Mathematics, MDPI, vol. 11(9), pages 1-34, April.
    8. Gharbi, Ali & Kenné, Jean-Pierre & Kaddachi, Rawia, 2022. "Dynamic optimal control and simulation for unreliable manufacturing systems under perishable product and shelf life variability," International Journal of Production Economics, Elsevier, vol. 247(C).
    9. N. Saranya & A. Shophia Lawrence, 2019. "A stochastic inventory system with replacement of perishable items," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 563-582, June.
    10. Yonit Barron & Opher Baron, 2020. "The residual time approach for (Q, r) model under perishability, general lead times, and lost sales," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 601-648, December.
    11. Gong, Min & Lian, Zhaotong & Xiao, Hua, 2022. "Inventory control policy for perishable products under a buyback contract and Brownian demands," International Journal of Production Economics, Elsevier, vol. 251(C).
    12. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10117-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.