IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i1d10.1007_s11009-021-09860-y.html
   My bibliography  Save this article

A Fourier Transform Method for Solving Backward Stochastic Differential Equations

Author

Listed:
  • Yingming Ge

    (The Chinese University of Hong Kong)

  • Lingfei Li

    (The Chinese University of Hong Kong)

  • Gongqiu Zhang

    (The Chinese University of Hong Kong)

Abstract

We propose a method based on the Fourier transform for numerically solving backward stochastic differential equations. Time discretization is applied to the forward equation of the state variable as well as the backward equation to yield a recursive system with terminal conditions. By assuming the integrability of the functions in the terminal conditions and applying truncation, the solutions of the system are shown to be integrable and we derive recursions in the Fourier space. The fractional FFT algorithm is applied to compute the Fourier and inverse Fourier transforms. We showcase the efficiency of our method through various numerical examples.

Suggested Citation

  • Yingming Ge & Lingfei Li & Gongqiu Zhang, 2022. "A Fourier Transform Method for Solving Backward Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 385-412, March.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:1:d:10.1007_s11009-021-09860-y
    DOI: 10.1007/s11009-021-09860-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09860-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09860-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    4. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    2. Ioannis Exarchos & Evangelos Theodorou & Panagiotis Tsiotras, 2019. "Stochastic Differential Games: A Sampling Approach via FBSDEs," Dynamic Games and Applications, Springer, vol. 9(2), pages 486-505, June.
    3. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    4. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    5. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    6. Bendera, Christian & Moseler, Thilo, 2008. "Importance sampling for backward SDEs," CoFE Discussion Papers 08/11, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    8. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    9. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    10. Steven Kou & Xianhua Peng & Xingbo Xu, 2016. "EM Algorithm and Stochastic Control in Economics," Papers 1611.01767, arXiv.org.
    11. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    12. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    13. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    14. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    15. Ewald, Christian Oliver & Nolan, Charles, 2024. "On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    16. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    17. Aïd, René & Campi, Luciano & Langrené, Nicolas & Pham, Huyên, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," LSE Research Online Documents on Economics 63011, London School of Economics and Political Science, LSE Library.
    18. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    19. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.
    20. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:1:d:10.1007_s11009-021-09860-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.