IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i4d10.1007_s11009-020-09799-6.html
   My bibliography  Save this article

Efficient Simulation of Ruin Probabilities When Claims are Mixtures of Heavy and Light Tails

Author

Listed:
  • Hansjörg Albrecher

    (University of Lausanne)

  • Martin Bladt

    (University of Lausanne)

  • Eleni Vatamidou

    (University of Lausanne)

Abstract

We consider the classical Cramér-Lundberg risk model with claim sizes that are mixtures of phase-type and subexponential variables. Exploiting a specific geometric compound representation, we propose control variate techniques to efficiently simulate the ruin probability in this situation. The resulting estimators perform well for both small and large initial capital. We quantify the variance reduction as well as the efficiency gain of our method over another fast standard technique based on the classical Pollaczek-Khinchine formula. We provide a numerical example to illustrate the performance, and show that for more time-consuming conditional Monte Carlo techniques, the new series representation also does not compare unfavorably to the one based on the Pollaczek-Khinchine formula.

Suggested Citation

  • Hansjörg Albrecher & Martin Bladt & Eleni Vatamidou, 2021. "Efficient Simulation of Ruin Probabilities When Claims are Mixtures of Heavy and Light Tails," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1237-1255, December.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09799-6
    DOI: 10.1007/s11009-020-09799-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09799-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09799-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems Using Finite Mixture Models," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 417-444, May.
    2. Christian Yann Robert & Quang Huy Nguyen, 2014. "New efficient estimators in rare event simulation with heavy tails," Post-Print hal-02006632, HAL.
    3. Vatamidou, E. & Adan, I.J.B.F. & Vlasiou, M. & Zwart, B., 2013. "Corrected phase-type approximations of heavy-tailed risk models using perturbation analysis," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 366-378.
    4. Søren Asmussen & Dominik Kortschak, 2015. "Error Rates and Improved Algorithms for Rare Event Simulation with Heavy Weibull Tails," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 441-461, June.
    5. Lee, David & Li, Wai Keung & Wong, Tony Siu Tung, 2012. "Modeling insurance claims via a mixture exponential model combined with peaks-over-threshold approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 538-550.
    6. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    7. Joshua Chan & Dirk Kroese, 2011. "Rare-event probability estimation with conditional Monte Carlo," Annals of Operations Research, Springer, vol. 189(1), pages 43-61, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    2. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    3. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    4. Tzougas, George & Karlis, Dimitris, 2020. "An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion," LSE Research Online Documents on Economics 104027, London School of Economics and Political Science, LSE Library.
    5. Tzougas, George & Karlis, Dimitris & Frangos, Nicholas, 2017. "Confidence intervals of the premiums of optimal Bonus Malus Systems," LSE Research Online Documents on Economics 70926, London School of Economics and Political Science, LSE Library.
    6. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    7. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    8. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    9. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    10. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    11. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    12. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    13. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    14. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2015. "Optimal relativities and transition rules of a bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 255-263.
    15. Li, Yinhuan & Fung, Tsz Chai & Peng, Liang & Qian, Linyi, 2023. "Diagnostic tests before modeling longitudinal actuarial data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 310-325.
    16. Martinek, László & Arató, N. Miklós, 2019. "An approach to merit rating by means of autoregressive sequences," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 205-217.
    17. O. J. Boxma & E. J. Cahen & D. Koops & M. Mandjes, 2019. "Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 125-153, March.
    18. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    19. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    20. Geiger Daniel J. & Adekpedjou Akim, 2019. "On corrected phase-type approximations of the time value of ruin with heavy tails," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 57-75, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09799-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.