IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i2d10.1007_s11009-019-09710-y.html
   My bibliography  Save this article

SIR-Type Epidemic Models as Block-Structured Markov Processes

Author

Listed:
  • Claude Lefèvre

    (Université Libre de Bruxelles)

  • Matthieu Simon

    (University of Melbourne)

Abstract

This paper proposes a block-structured Markov process to describe the spread of epidemics of Susceptible-Infected-Removed (SIR) type. Our purpose is to determine the distribution of the final state of the process and of some other interesting measures of the dimension of the epidemic. The followed modeling approach proves to be simple and systematic. Its flexibility is underlined by the presentation of several specific models that extend the classical general epidemic. Finally, two numerical examples illustrate some of the results obtained.

Suggested Citation

  • Claude Lefèvre & Matthieu Simon, 2020. "SIR-Type Epidemic Models as Block-Structured Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 433-453, June.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09710-y
    DOI: 10.1007/s11009-019-09710-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09710-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09710-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Runhuan Feng & Jose Garrido, 2011. "Actuarial Applications of Epidemiological Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 112-136.
    2. Asmussen, Soren & Avram, Florin & Usabel, Miguel, 2002. "Erlangian Approximations for Finite-Horizon Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 267-281, November.
    3. Picard, Philippe & Lefèvre, Claude, 1993. "Distribution of the final state and severity of epidemics with fatal risk," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 277-294, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Gómez-Corral & Martín López-García & Maria Jesus Lopez-Herrero & Diana Taipe, 2020. "On First-Passage Times and Sojourn Times in Finite QBD Processes and Their Applications in Epidemics," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
    2. Xiaowei Chen & Wing Fung Chong & Runhuan Feng & Linfeng Zhang, 2020. "Pandemic risk management: resources contingency planning and allocation," Papers 2012.03200, arXiv.org.
    3. Gómez-Corral, A. & Lopez-Herrero, M.J. & Taipe, D., 2023. "A Markovian epidemic model in a resource-limited environment," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    4. André de Palma & Nathalie Picard & Stef Proost, 2021. "SCARE: when Economics meets Epidemiology with COVID-19, first wave," THEMA Working Papers 2021-10, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    6. André de Palma & Nathalie Picard & Stef Proost, 2020. "SCARE: When Economics Meets Epidemiology with Covid-19," CESifo Working Paper Series 8573, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bladt, Mogens & Ivanovs, Jevgenijs, 2021. "Fluctuation theory for one-sided Lévy processes with a matrix-exponential time horizon," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 105-123.
    2. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    3. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    4. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    5. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    6. D'Amato, Valeria & Di Lorenzo, Emilia & Piscopo, Gabriella & Sibillo, Marilena & Trotta, Annarita, 2024. "Insurance business and social sustainability: A proposal," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    7. Hansjoerg Albrecher & Pierre-Olivier Goffard, 2020. "On the profitability of selfish blockchain mining under consideration of ruin," Papers 2010.12577, arXiv.org.
    8. Muhsin Tamturk & Dominic Cortis & Mark Farrell, 2020. "Examining the Effects of Gradual Catastrophes on Capital Modelling and the Solvency of Insurers: The Case of COVID-19," Risks, MDPI, vol. 8(4), pages 1-13, December.
    9. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Post-Print hal-02564462, HAL.
    10. Xiaowei Chen & Wing Fung Chong & Runhuan Feng & Linfeng Zhang, 2020. "Pandemic risk management: resources contingency planning and allocation," Papers 2012.03200, arXiv.org.
    11. Hillairet, Caroline & Lopez, Olivier & d'Oultremont, Louise & Spoorenberg, Brieuc, 2022. "Cyber-contagion model with network structure applied to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 88-101.
    12. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    13. Esther Frostig & Adva Keren-Pinhasik, 2020. "Parisian Ruin with Erlang Delay and a Lower Bankruptcy Barrier," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 101-134, March.
    14. Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2018. "Optimal dividends under Erlang(2) inter-dividend decision times," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 225-242.
    15. Caroline Hillairet & Olivier Lopez, 2020. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Working Papers hal-02564462, HAL.
    16. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally negative L\'evy processes with fixed transaction costs," Papers 2004.01838, arXiv.org, revised Dec 2020.
    17. Claude Lefèvre & Matthieu Simon, 2022. "On the Risk of Ruin in a SIS Type Epidemic," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 939-961, June.
    18. Søren Asmussen & Mogens Bladt, 2022. "From PH/MAP to ME/RAP," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 173-175, April.
    19. Philippe Artzner & Karl-Theodor Eisele & Thorsten Schmidt, 2020. "Insurance-Finance Arbitrage," Papers 2005.11022, arXiv.org, revised Nov 2022.
    20. Francisco J. Zagmutt & Stephen H. Sempier & Terril R. Hanson, 2013. "Disease Spread Models to Estimate Highly Uncertain Emerging Diseases Losses for Animal Agriculture Insurance Policies: An Application to the U.S. Farm‐Raised Catfish Industry," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1924-1937, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09710-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.