IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v21y2019i3d10.1007_s11009-019-09700-0.html
   My bibliography  Save this article

Moments of the Count of a Regular Expression in a Heterogeneous Random Sequence

Author

Listed:
  • G. Nuel

    (Sorbonne University)

Abstract

We focus here on the distribution of the random count N of a regular expression in a multi-state random sequence generated by a heterogenous Markov source. We first briefly recall how classical Markov chain embedding techniques allow reducing the problem to the count of specific transitions in a (heterogenous) order 1 Markov chain over a deterministic finite automaton state space. From this result we derive the expression of both the mgf/pgf of N as well as the factorial and non-factorial moments of N. We then introduce the notion of evidence-based constraints in this context. Following the classical forward/backward algorithm in hidden Markov models, we provide explicit recursions allowing to compute the mgf/pgf of N under the evidence constraint. All the results presented are illustrated with a toy example.

Suggested Citation

  • G. Nuel, 2019. "Moments of the Count of a Regular Expression in a Heterogeneous Random Sequence," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 875-887, September.
  • Handle: RePEc:spr:metcap:v:21:y:2019:i:3:d:10.1007_s11009-019-09700-0
    DOI: 10.1007/s11009-019-09700-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09700-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09700-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frosso Makri & Zaharias Psillakis, 2013. "Exact distributions of constrained (k, ℓ) strings of failures between subsequent successes," Statistical Papers, Springer, vol. 54(3), pages 783-806, August.
    2. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    3. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    4. Morteza Ebneshahrashoob & Tangan Gao & Mengnien Wu, 2005. "An Efficient Algorithm for Exact Distribution of Discrete Scan Statistics," Methodology and Computing in Applied Probability, Springer, vol. 7(4), pages 459-471, December.
    5. Vergne Nicolas, 2008. "Drifting Markov Models with Polynomial Drift and Applications to DNA Sequences," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-45, February.
    6. M. Koutras & V. Alexandrou, 1995. "Runs, scans and URN model distributions: A unified Markov chain approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 743-766, December.
    7. Martin, Donald E.K., 2008. "Application of auxiliary Markov chains to start-up demonstration tests," European Journal of Operational Research, Elsevier, vol. 184(2), pages 574-583, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He Yi & Lirong Cui & Narayanaswamy Balakrishnan, 2022. "On the Derivative Counting Processes of First- and Second-order Aggregated Semi-Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1849-1875, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiros D. Dafnis & Frosso S. Makri & Markos V. Koutras, 2021. "Generalizations of Runs and Patterns Distributions for Sequences of Binary Trials," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 165-185, March.
    2. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    3. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime Switching Econometric Models," CIRJE F-Series CIRJE-F-1049, CIRJE, Faculty of Economics, University of Tokyo.
    4. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2019. "Asymptotic properties of the maximum likelihood estimator in regime switching econometric models," Journal of Econometrics, Elsevier, vol. 208(2), pages 442-467.
    5. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    6. Spiros D. Dafnis & Frosso S. Makri, 2022. "Weak runs in sequences of binary trials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 573-603, July.
    7. Hiroyuki Kasahara & Katsumi Shimotsu, 2018. "Testing the Number of Regimes in Markov Regime Switching Models," Papers 1801.06862, arXiv.org, revised Jan 2018.
    8. Donald E. K. Martin & Laurent Noé, 2017. "Faster exact distributions of pattern statistics through sequential elimination of states," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 231-248, February.
    9. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    10. Florian Huber & Josef Schreiner, 2023. "Are Phillips curves in CESEE still alive and well behaved?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q3/23, pages 7-27.
    11. Zsolt Darvas, 2013. "Monetary transmission in three central European economies: evidence from time-varying coefficient vector autoregressions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(2), pages 363-390, May.
    12. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    13. Barthélemy, Jean & Marx, Magali, 2017. "Solving endogenous regime switching models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 1-25.
    14. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    15. Hollander, Hylton & Liu, Guangling, 2016. "Credit spread variability in the U.S. business cycle: The Great Moderation versus the Great Recession," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 37-52.
    16. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    17. Marfatia, Hardik A., 2015. "Monetary policy's time-varying impact on the US bond markets: Role of financial stress and risks," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 103-123.
    18. David Finck & Peter Tillmann, 2022. "The Role of Global and Domestic Shocks for Inflation Dynamics: Evidence from Asia," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1181-1208, October.
    19. Serkan Eryilmaz, 2005. "On the distribution and expectation of success runs in nonhomogeneous Markov dependent trials," Statistical Papers, Springer, vol. 46(1), pages 117-128, January.
    20. Haroon Mumtaz & Francesco Zanetti, 2013. "The Impact of the Volatility of Monetary Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(4), pages 535-558, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:21:y:2019:i:3:d:10.1007_s11009-019-09700-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.