IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v7y2008i1n6.html
   My bibliography  Save this article

Drifting Markov Models with Polynomial Drift and Applications to DNA Sequences

Author

Listed:
  • Vergne Nicolas

    (University of Evry)

Abstract

In this article, we introduce the drifting Markov models (DMMs) which are inhomogeneous Markov models designed for modeling the heterogeneities of sequences (in our case DNA or protein sequences) in a more flexible way than homogeneous Markov chains or even hidden Markov models (HMMs). We focus here on the polynomial drift: the transition matrix varies in a polynomial way. To show the reliability of our models on DNA, we exhibit high similarities between the probability distributions of nucleotides obtained by our models and the frequencies of these nucleotides computed by using a sliding window. In a further step, these DMMs can be used as the states of an HMM: on each of its segments, the observed process can be modeled by a drifting Markov model. Search of rare words in DNA sequences remains possible with DMMs and according to the fits provided, DMMs turn out to be a powerful tool for this purpose. The software is available on request from the author. It will soon be integrated on seq++ library (http://stat.genopole.cnrs.fr/seqpp/).

Suggested Citation

  • Vergne Nicolas, 2008. "Drifting Markov Models with Polynomial Drift and Applications to DNA Sequences," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-45, February.
  • Handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:6
    DOI: 10.2202/1544-6115.1326
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1326
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Massoni & Madalina Olteanu & Patrick Rousset, 2010. "Career-path analysis using drifting Markov models (DMM) and self-organizing maps," Post-Print hal-00443530, HAL.
    2. Vlad Stefan Barbu & Nicolas Vergne, 2019. "Reliability and Survival Analysis for Drifting Markov Models: Modeling and Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1407-1429, December.
    3. Singer Meromit & Engström Alexander & Schönhuth Alexander & Pachter Lior, 2011. "Determining Coding CpG Islands by Identifying Regions Significant for Pattern Statistics on Markov Chains," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, September.
    4. G. Nuel, 2019. "Moments of the Count of a Regular Expression in a Heterogeneous Random Sequence," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 875-887, September.
    5. Yousif Alyousifi & Kamarulzaman Ibrahim & Mahmod Othamn & Wan Zawiah Wan Zin & Nicolas Vergne & Abdullah Al-Yaari, 2022. "Bayesian Information Criterion for Fitting the Optimum Order of Markov Chain Models: Methodology and Application to Air Pollution Data," Mathematics, MDPI, vol. 10(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.